• Title/Summary/Keyword: Reduced nutrients

Search Result 416, Processing Time 0.035 seconds

Comparative Evaluation of QUAL2E and QUAL-NIER Models for Water Quality Prediction in Eutrophic River (부영양 하천의 수질예측을 위한 QUAL2E와 QUAL-NIER 모델의 비교·평가)

  • Choi, Jungkyu;Chung, Sewoong;Ryoo, Jaeil
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • It is often believed that a more complex water quality model is better able to simulate reality. The more complex a model, however, the more parameters are involved thus increases the cost and uncertainty of modeling processes. The objective of this study was to compare the performance of two steady-state river water quality models, QUAL2E and QUAL-NIER, that have different complexity. QUAL-NIER is recently developed by National Institute of Environmental Research aiming to enhance the simulation capability of QUAL2E for eutrophic rivers. It is a carbon based model that considers different forms, such as dissolved versus particulate and labile versus refractory, of carbon and nutrients, and the contribution of autochthonous loading due to algal metabolism. The models were simultaneously applied to Nakdong River and their performance was evaluated by statistical verification with field data. Both models showed similar performance and satisfactorily replicated the longitudinal variations of BOD, T-N, T-P, Chl.a concentrations along the river. The algal blooms occurred at the stagnant reaches of downstream were also reasonably captured by the models. Although QUAL-NIER somewhat reduced the magnitude of errors, the hypothesis tests revealed no statistical evidence to justify its better performance. The contribution of autochthonous carbon and nutrient load by algal metabolism was insignificant because the hydraulic retention time is relatively short compare to the time scale of kinetic reactions. The results imply that the kinetic processes included in QUAL-NIER are too complex for the nature and scale of the real processes involved, thus needs to be optimized for improving the modeling efficiency.

Effect of Rudbeckia laciniata Extract on Physiological Activity of HaCaT Cells (삼잎국화 추출물의 피부세포 생리활성 효과)

  • Kim, Jun-Sub
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.335-340
    • /
    • 2016
  • The objective of the present investigation was to obtain vitamin, mineral, flavonoid, and polyphenol profiles of Rudbeckia laciniata (RL), and to examine the effects of extract of RL (RLE) on various physiological activities of HaCaT keratinocyte for the utilization of RL as natural raw materials to develop functional food. To accomplish this purpose, we checked the contents of the general nutrients of RL. The contents of vitamin A, vitamin $B_1$ and vitamin $B_2$ were $7.49{\mu}g/g$, $51.96{\mu}g/g$, and $132{\mu}g/g$ respectively, while vitamin C and vitamin $D_3$ were not detected. The contents of mineral such as Ca, K and Fe were 2.01 mg/g, 6.06 mg/g and 0.03 mg/g respectively. Total flavonoid contents of RLE were 0.25 mg/g, and total polyphenol were estimated as 1.43 mg/g. Because RL contains high levels of vitamin A which is associated with skin aging, we investigated the effect of RLE on physiological function of keratinocytes with respect to skin aging. We found that RLE significantly increased the growth rate of HaCaT cells and reduced ultraviolet radiation B (UVB)-induced cellular toxicity. Also, the extract of Rudbeckia laciniata attenuated the UVB-induced reactive oxygen species (ROS) generation in a dose-dependent manner in HaCaT cells. In addition, treatment with the extract dose-dependently increased migration activity of HaCaT cells. Thus, these findings indicated that RLE could regulate the physiological activity of keratinocytes, and may be used to develop functional foods.

Effects of Fasting on Brain Expression of Kiss2 and GnRH I and Plasma Levels of Sex Steroid Hormones, in Nile Tilapia Oreochromis niloticus (절식이 나일 틸라피아 Oreochromis niloticus의 Kiss2, GnRH I mRNA 발현 및 성 스테로이드 호르몬 농도에 미치는 영향)

  • Park, Jin Woo;Kwon, Joon Yeong;Jin, Ye Hwa;Oh, Sung-Yong
    • Ocean and Polar Research
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2016
  • In many fish species, including Nile tilapia (Oreochromis niloticus), gonadal development occurs at the expense of stored energy and nutrients. Therefore, reproductive systems are inhibited by limited food supply. It has been well established that reproductive function is highly sensitive to both metabolic status and energy balance. Nothing is known about the possible mediated connection between energy balance and reproduction. Kisspeptin, a neuropeptide product of the Kiss gene has emerged as an essential gatekeeper of reproduction and may be possibly be linked to energy balance and reproduction in non-mammalians. Thus, in this study, the effect of fasting (10 days) on the expression of kisspeptin and the gonadotropin-releasing hormone (GnRH) gene were assessed in Nile tilapia (male and female) using qRT-PCR. In addition, plasma levels of estradiol-$17{\beta}$ ($E_2$) and 11-ketotestosterone (11-KT) in adult tilapia were measured by ELISA. In male tilapia, fasting reduced Kiss2 and GnRH I mRNA expression in the brain and 11-KT level in comparison with the fed tilapia (p < 0.05). In females, however, there were no significant differences in GnRH I mRNA expression and $E_2$ between fish subjected to fasting and those fed (p > 0.05). These data indicate the impact of nutritional states on kisspeptin as a potential regulatory mechanism for the control of reproduction in male Nile tilapia.

Effect of the supernatant reflux position and ratio on the nitrogen removal performance of anaerobic-aerobic slaughterhouse wastewater treatment process

  • Tong, Shuang;Zhao, Yan;Zhu, Ming;Wei, Jing;Zhang, Shaoxiang;Li, Shujie;Sun, Shengdan
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.309-315
    • /
    • 2020
  • Slaughterhouse wastewater (SWW) is characterized as one of the most harmful agriculture and food industrial wastewaters due to its high organic content. The emissions of SWW would cause eutrophication of surface water and pollution of groundwater. This study developed a pilot scale anaerobic-aerobic slaughterhouse wastewater treatment process (AASWWTP) to enhance the chemical oxygen demand (COD) and total nitrogen (TN) removal. The optimum supernatant reflux position and ratio for TN removal were investigated through the modified Box-Behnken design (BBD) experiments. Results showed that COD could be effectively reduced over the whole modified BBD study and the removal efficiency was all higher than 98%. The optimum reflux position and ratio were suggested to be 2 alure and 100%, respectively, where effluent TN concentration was satisfied with the forthcoming Chinese discharge standard of 25 mg/L. Anaerobic digestion and ammonia oxidation were considered as the main approaches for COD and TN removal in the AASWWTP. The results of inorganic nutrients (K+, Na+, Ca2+ and Mg2+) indicated that the SWW was suitable for biological treatment and the correspondingly processes such as AASWWTP should be widely researched and popularized. Therefore, AASWWTP is a promising technology for SWW treatment but more research is needed to further improve the operating efficiency.

Application of Ecosystem Model for Eutrophication Control in Coastal Sea of Saemankeum Area -2. Quantitative Management of Pollutant Loading- (새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용 -2. 오염부하의 정량적 관리-)

  • Kim Jong Gu;Kim Yang Soo;Cho Eun Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.356-365
    • /
    • 2002
  • One of the most important factors that cause eutrophication is nutrient materials containing nitrogen and phosphorus which stem from excreation of terrestial sources and release from sediment. Therefore, to improve water quality, the reduction of these nutrients loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and ecosystem model, which was developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the eutrophication. The residual currents, which were obtained by integrating the simulated tidal currents over 1 tidal cycle, showed the presence of a typical counterclockwise eddies between Gyewha and Garyuk island. Density driven currents were generated westward at surface and eastward at the bottom in Saemankeum area where the fresh waters are flowing into, The ecosystem model was calibrated with the data surveyed in the field of the study area in annual average. The simulated results were fairly good coincided with the observed values within relative error of $30\%$. The simulations of DIN and DIP concentrations were performed using ecosystem model under the conditions of $40\~100\%$ pollution load reductions from pollution sources. In study area, concentration of DIN and DIP were reduced to $59\%$ and $28\%$ in case of the $80\%$ reduction of the input loads from fresh water respectively. But pollution loads from sediment had hardly affected DIN and DIP concentration, The $95\%$ input load abatement is necessary to meet the DIN and DIP concentration of second grade of ocean water quality criteria.

Changes of Physico-chemical Characteristics of Pyunyuk Depending on Cooking Time during Processing (돼지머리편육 제조시 삶는 시간 조건에 따른 제품의 이화학적 특성 변화)

  • 김윤지;이남혁
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.668-674
    • /
    • 1998
  • Physico-chemical qualities of pyunyuk depending on the cooking time were evaluated to produce high quality and to reduce labor and processing time. Pork headmeat divided into two parts was cooked for 1~4hrs, trimmed and pressed with 110kg/$\textrm{cm}^2$(gauge pressure) for 3.5hrs at 1$0^{\circ}C$. The contents of general nutrients, yield, texture, color, fatty acid composition, gel structure, and sensory evaluation were observed. Deboning time was very dependent on cooking time. Optimum cooking time observed in this study was 2~2.5hrs for efficiency of deboning and yield. Excess cooking time resulted in low yield and working efficiency. Yield variation depending on the cooking time was 14.3~26.0% and it was reduced by increasing the cooking time. The content of moisture was 53.5~54.8% which was not significantly different by cooking time. The content of crude fat was 14.2~26.0% which was decreased by increasing the cooking time. The contents of crude protein(21.1~26.3%) and mineral(1.4~2.7%) were increased by increasing the cooking time. The color of pyunyuk was significantly different by cooking time(p<0.05). In the texture, hardness and chewiness of the pyunyuk cooked for 2hrs were significantly higher than others processed in this study(p<0.05). However cohesiveness and springiness were not different among pyunyuks. With sensory evaluation, hardness was similar among the pyunyuks cooked over 2hrs. The pyunyuk cooked for 1hr showed higher value in juiciness than the pyunyuk cooked for 3~4hrs(p<0.05). The % of saturated fatty acids was decreased by increasing the cooking time, and gel structure of pyunyuk cooked for 2hrs was the most compact among treaments. In conclusion, 2hrs was proper as a cooking time concerned with working efficiency and physico-chemical quality of pyunpyk.

  • PDF

Losses of Biomass and Mineral Nutrients during Decomposition of Herbaceous Plants in Riverine Wetlands

  • Kim, Sa-Rin;Kim, Jae-Geun;Ju, Eun-Jeong;Lee, Yang-Woo;Lee, Bo-Ah;Kim, Heung-Tae;Nam, Jong-Min
    • Journal of Ecology and Environment
    • /
    • v.29 no.5
    • /
    • pp.469-478
    • /
    • 2006
  • The composition changes of litters were investigated to figure out the effects of the decomposition of Humulus japonicus on nutrient circulation and decomposition process in the riverine wetlands: Tan stream and Amsa-dong. Litterbags (mesh size 1 mm and 5 mm) were installed to monitor mass and nutrient changes of 5 types of litters: H. japanicus only, Miscanthus sacchariflarus only, Phragmites communis only, mixed litters including H. japonicus, and mixed litters without H. japonicus for 7 months. It was shown that k (decay rate) of the H. japanicus ($2.68{\sim}3.12$) was higher than that of M. sacchariflorus ($1.83{\sim}2.16$) and P. communis ($0.02{\sim}1.18$). The mass and organic remainings of the mixed litters including H. japonicus at Tan stream were $47.0{\sim}55.1%\;and\;47.0{\sim}54.9%$ and those of the litterbags without H. japanicus were $49.2{\sim}65.4%\;and\;47.1{\sim}57.5%$, respectively. This result indicated that the nutrient circulation was faster at H. japanicus community than others. Ca, Na, Mg, K, P, C, N and H contents reduced to around $40{\sim}80%$ of original. However, Na concentration increased up to $407{\sim}584%$ at 100 days and decreased to $248{\sim}498%$ at the end of the experiment. Decomposition rates were similar between 1 mm and 5mm mesh size litterbags and this implies that plant litters in studied areas decomposed mainly by microbes rather than small animals. This study revealed that the fast growth of H. japonicus was resulted from fast decomposition in part: positive feedback of nutrient cycling.

Effect of biochar application on growth of Chinese cabbage (Brassica chinensis)

  • Oh, Taek-Keun;Lee, Jae-Han;Kim, Su-Hun;Lee, Ho Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.359-365
    • /
    • 2017
  • Biochar has the ability to mitigate climate change, improve crop productivity, and adsorb various contaminants. The aim of this work was to confirm the effect of biochar as a soil amendment on growth of Chinese cabbage (Brassica chinensis) using a pot experiment. Biochar was produced from residual-wood burnt at a pyrolytic temperature of $400^{\circ}C$ and consisted of 51.6 % carbon (C) by mass. The biochar was added to the soil at 0, 1, 3, and 5% by weight, which represent about 0, 18, 54, and $90t\;ha^{-1}$, respectively. The treatments were arranged in a randomized complete block design with 3 replications. The Chinese cabbage was grown for 49 days in a glasshouse in pots filled with sandy loam soil. Experimental results showed that the residual-wood biochar used for the experiment was slightly alkaline (pH 7.5). The fresh weights of Chinese cabbage were 86.22 g, 84.1 g, 63.23 g and 70.87 g, respectively, for biochar applications at 0, 18, 54, and $90t\;ha^{-1}$. Compared with the control (i.e., no biochar), biochar application increased soil pH and electrical conductivity (EC). Addition of biochar (54 and $90t\;ha^{-1}$) to sandy loam soil had no effect on growth of Chinese cabbage. This might be due to excessive increase of soil pH from the biochar application, leading to reduced availability of plant nutrients. Based on these results, the authors conclude that an excessive addition of biochar may have negative effects on the healthy growth of Chinese cabbage.

Influences of Forest Fire on Forest Floor and Litterfall in Bhoramdeo Wildlife Sanctuary (C.G.), India

  • Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.330-341
    • /
    • 2017
  • Tropical forests play a key role for functioning of the planet and maintenance of life. These forests support more than half of the world's species, serve as regulators of global and regional climate, act as carbon sinks and provide valuable ecosystem services. Forest floor biomass and litterfall dynamics was measured in different sites influenced by fire in a seasonally dry tropical forest of Bhoramdeo wildlife sanctuary of Chhattisgarh, India. The forest floor biomass was collected randomly placed quadrats while the litterfall measured by placing stone-block lined denuded quadrat technique. The seasonal mean total forest floor biomass across the fire regimes varied from $2.00-3.65t\;ha^{-1}$. The total litterfall of the study sites varied from $4.75-7.56t\;ha^{-1}\;yr^{-1}$. Annual turnover of litter varied from 70-74% and the turnover time between 1.35-1.43 years. Monthly pattern of forest floor biomass indicated that partially decayed litter, wood litter and total forest floor were differed significantly. The seasonal variation showed that leaf fall differed significantly in winter season only among the fire regimes while the wood litter was found non significant in all the season. This study shows that significant variation among the site due to the forest fire. Decomposition is one of the ecological processes critical to the functioning of forest ecosystems. The decomposing wood serves as a saving account of nutrients and organic materials in the forest floor. Across the site, high fire zone was facing much of the deleterious effects on forest floor biomass and litter production. Control on such type of wildfire and anthropogenic ignition could allow the natural recovery processes to enhance biological diversity. Chronic disturbances do not provide time for ecosystem recovery; it needs to be reduced for ecosystem health and maintaining of the high floral and faunal biodiversity.

The Effect of NutriPlus Program among 1-5 Year Children in Daejeon Area - The Improvement in Nutritional Status of Children and Nutrition Knowledge and Attitude of Parents - (대전지역 유아대상 영양플러스 사업 효과 - 유아 영양개선과 보호자 영양지식 및 태도에 미친 영향 -)

  • Park, Seon-A;Yoon, Eun-Young
    • Korean Journal of Community Nutrition
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • This study investigated the effect of nutritional improvement of 1-5 year children participated in NutriPlus program. The program was carried out at Public health Center, Daedeok-gu, Daejeon from March 2009 to April 2011. The subjects were selected among applicants for low-income family financing of the government and included 90 children and their parents. they were divided into 2 groups (less than 6 months and more than 6 months of participation in the study). We analyzed the effects of NutriPlus program and nutrition education in both study groups. The results of this study were summarized as follows: The number of children with less than 10th percentile in height and weight and weight for height was decreased. The anemia prevalence rate was reduced from 64.4% to 8.9%. NAR value of subjects increased for energy, protein, calcium, iron, vitamin A, riboflavin, niacin and vitamin C. The education program improved knowledge and attitude of the parents. In nutrition knowledge according to the income level, there were greater changes in the group of less than 100% compared to the subsistence. In nutrition attitude according to the education level, there were greater changes in the group of middle school graduates than in high school graduates or college graduates. There were no difference between less than 6 months group and more than 6 months group in improvement of hemoglobin level, anthropometric data and nutrients intakes. Based on these results, we conclude that providing supplementary food to children and nutrition education brought positive effects on growth of the children.