• Title/Summary/Keyword: Reduced Triaxial Compression

Search Result 12, Processing Time 0.023 seconds

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Analysis of behavioral characteristics of liquefaction of sand through repeated triaxial compression test and numerical analysis

  • Hyeok Seo;Daehyeon Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.165-177
    • /
    • 2024
  • Liquefaction phenomenon refers to a phenomenon in which excess pore water pressure occurs when a dynamic load such as an earthquake is rapidly applied to a loose sandy soil ground where the ground is saturated, and the ground loses effective stress and becomes liquid. The laboratory repetition test for liquefaction evaluation can be performed through a repeated triaxial compression test and a repeated shear test. In this regard, this study attempted to evaluate the effects of the relative density of sand on the liquefaction resistance strength according to particle size distribution using repeated triaxial compression tests, and additional experimental verification using numerical analysis was conducted to overcome the limitations of experimental equipment. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the classification of soil, and the liquefaction resistance strength of the SP sample close to SW was quite high. As a result of numerical analysis, it was confirmed that the liquefaction resistance strength increased as the confining pressure increased under the same relative density, and the liquefaction resistance strength did not decrease below a certain limit even though the confining pressure was significantly reduced at a relatively low relative density. This is judged to be due to a change in confining pressure according to the depth of the ground. As a result of analyzing the liquefaction resistance strength according to the frequency range, it was confirmed that there was no significant difference from the laboratory experiment results in the basic range of 0.1 to 1.0 Hz.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Multi -Stage Triaxial Test under Constant Confining Pressure (일정구속압력 다단계삼축압축시험)

  • Kim, Sang-Gyu;Kim, Hyeon-Tae;Kim, Ho-Il
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.27-40
    • /
    • 1993
  • This paper proposes a new procedure carrying out a series of consolidated-undrained triaxial tests with a specimen. In this procedure high confining pressure applied to the specimen keeps constant during the test and each stage of consolidation can be controlled by partial drainage. With this procedure the test time is remarkably reduced by performing a series of triaxial tests with a single specimen. In order to verify the appliesbility of the procedure, standard triaxial compression tests and conventional multi -stage triaxial testy are performed for both undisturbed and disturbed samples and the results are compared with those of the proposed procedure. The comparison shows that strength parameters determined by the proposed procedure are well agreed with those of the other tests and thus it can be said that the procedure is very effective and practical in determining strength parameters.

  • PDF

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Characteristics of Stress-Strain Behavior for Lade's Single Work-Hardening Constitutive Model with Stress Path of Sands (모래의 응력경로에 따른 Lade의 단일항복면 구성모델의 응력-변형거동 특성)

  • Kim, Chan-Kee;Lee, Jong-Cheon;Cho, Won-Beom;Park, Wook-Geun;Kim, Hwan-Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • In order to review the utility of Lade's single hardening constitutive model, a series of isotropic compression-expansion tests and consolidated drained triaxial tests including as CTC, TC, RTC, and OSP were performed by Baekma river sand with various of stress path. Parameters required in model were determined using these tests. The accuracy of analysis was reviewed by back analysis of test results used to determine the 11 parameters of soil property through the test of each stress path. Also. for verifying the accuracy of prediction for the stress-strain behavior using failure criterion related 9 parameters with correlational equation and constant and yield criterion related parameters h, ${\alpha}$ and ${\eta}_1$, when stress path is different with each other, it has been obtained in the review result of stress path dependent characteristics of the constitutional model through the analyzing results of CTC, TC, RTC, OSP, and fine silica sand tests.

Effect of the stress history on the shear behavior using a Triaxial compression test (삼축압축시험을 통한 응력이력에 따른 전단거동의 변화)

  • Kim, Seung-Han;Choi, Sung-Keun;Lee, Moon-Joo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.888-895
    • /
    • 2006
  • In this study, anisotropically consolidated undrained shear(CAU) test was performed to examine the variation of the shear strength according to the stress history. The specimen having 30% relative density was homogeniously prepared, and 200KPa of back pressure was applied to increase the B value more than 0.95. To make NC specimens, the vertical stress was applied on the specimen by 100KPa, 200KPa and 400KPa, and to make OC specimens, the vertical stress was applied upto 400KPa and was reduced to 200KPa and 100KPa resulting in OCR 2 and 4 respectively. The test result indicates the shear strength for the OC specimens are slightly higher then that of the NC specimens at the same confining pressure. The elastic modulus varies according to the confining stress and considerably affected by preconsolidation stress.

  • PDF

A Study on the Prediction of the Strength and Axial Strain of High-Strength Concrete Columns Confined by Tie Reinforcement (띠근 보강 고강도 콘크리트 기둥의 강도 및 축변형 특성 산정에 관한 연구)

  • Park, Hoon-Gyu;Jang, Il-Young
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.197-208
    • /
    • 1999
  • The use of high-strength concrete which permits smaller cross sections, reduced dead loads, and longer spans has been getting more popular in tall buildings. However, there has been little research on behavior of high-strength concrete columns laterally reinforced with square ties and subjected to compressive loading. With the addition of transverse reinforcement which lead to triaxial compressive state, ductility behavior of high-strength column member shall be increased. In this study, rational quality and quantity evaluations were made to investigate the ultimate strength and strain ductility by confinement effect of tie reinforced high-strength concrete columns subject to uniaxial loads. Concrete failure theory at the triaxial compressive state and statistical results based on conventional experimental data were applied for this propose. Up to 185 columns, tested under monotonically increasing concentric loading, were evaluated in terms of strength and strain ductility. Analytical results show that confinement stress, maximum compressive strength, and increase of strain equations were developed with the consideration of concrete strength, yield strength, spacing, volumetric ratio, and configurations of tie reinforcement.

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.

The Effects of Improvement in Clay with High Moisture Contents Using the Filter Type Vacuum Consolidation Method (필터형 진공압밀공법을 이용한 고함수비 점토지반의 개량효과)

  • Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.55-60
    • /
    • 2010
  • This study are carried out to an lab model tests to develop a construction method that solidifies high-water content cohesive soil by using filter type drain and vacuum pressure, and that stabilizes the ground by accelerating horizontal drain at incline or in tunnel. The calibration chamber was designed within length of 1.5m and height of 50cm, and a drainage hole for preconsolidation, a switchgear and a piezometer were installed at the bottom part of the chamber. Also, a settlement gage was installed at the top part so that it can measure the settlement by time. The calibration ground basis was made in a form of thin layer from kaolinite and bentonite in 9:1 ratio stirred at 130% water content condition. A filter type drain was installed at chamber center and a vacuum pressure of 0.8MPa was applied through a hose linked to the cap at the top part, then, the settlement was measured in every 1 hour interval. After experiment, the moisture contents were measured by position, then, verified the increase of solidity of the ground through a triaxial compression test on undisturbed profile. After 11 days from the effective date, it was observed that the settlement decreased by maximum 35mm and the water content ratio was reduced by 38% at most while the solidity of the ground increased by 5~8 times greater than before preconsolidation.