• Title/Summary/Keyword: Reduced Scale Model Test

Search Result 150, Processing Time 0.024 seconds

A Study on Behavior of materials for Flexural member of Reduced-Scale Models (축소모델 휨부재의 재료거동에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.84-88
    • /
    • 2000
  • The main objectives of this study are to compare the obtained mechanical characteristics of reduced-scale model materials with those of the prototype and to provide the information on the best selection of materials. Manufacturing techniques on the micro-concrete and reduced reinforcement are introduced. The test results of these materials are shown to be satisfactory with regard to the similitude requirement. The simple beam tests were performed to verify similitude in the bond behavior between micro-concrete and reduced reinforcement. Those results also prove that these manufacturing and experimental techniques are useful and reliable for reduced-scale model tests.

  • PDF

Analysis of pipe roof method test with a reduced-scale model (축소모형 강관추진실험 경향 분석)

  • Eum, Ki-Young;Jung, Kwan-Dong;Lee, Sung-Hyuk;Cheon, Jeong-Yeon;Jang, Hee-Jung;Lee, Jong-Tae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.664-670
    • /
    • 2010
  • The study on mechanical behavior of the structure at the site includes experimental method and numerical analysis method. Experimental method is categorized into true-scale test and laboratory model test. A laboratory model test is to monitor the failure mechanism with a model simulated similar with a real ground so as to identify the quantitative result, while a true-scale model test is the approach which enables to identify the potential problems that may occur with a simulated construction situation similar with a real site circumstance. Thus this study was intended to carry out the experimental test of non open-cut excavation by pipe roof method which is mostly common in domestic sites. as well as was aimed at identifying the ground behavior occurred during pipe penetration using laboratory model test. Appropriate reduced-scale model was selected, taking into account of domestic geological characteristics and operation characteristics of traditional and high-speed rail trains and the qualitative evaluation of displacement was carried out based on a certain ground loss volume depending on excavation after categorizing trackbed settlement pattern by depth of top soil.

  • PDF

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.

An Experimental Study on the Mechanical Characteristics of Materials for Reduced-Scale Models of Reinforced Concrete Structures (철근콘크리트 구조물의 축소모델 재료의 역학적 특성에 관한 실험적 연구)

  • 배성용;이한선;신영식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.249-254
    • /
    • 1994
  • The main objectives of this paper are to compare the obtained mechanical characteristics of reduced-scale model materials with those of the prototype and to provide the information on the best selection of materials. Manufacturing techniques on the micro-concrete and reduced reinforcement are introduced. The test results of these materials are shown to be satisfactory with regard to the similitude requrement. The simple beam tests were performed to verify similitude in the bond behavior between micro-concrete and reduced reinforcement. Those results also prove that these manufacturing and experimental techniques are useful and reliable for reduced-scale model test.

  • PDF

Failure Mechanism of Geosynthetic Reinforced Segmental Retaining Well in Tiered Configuration Using Reduced-scale Model Tests (축소 모형 실험에 의한 계단식 보강토옹벽의 파괴 메카니즘)

  • Yoo Chung-Sik;Jung Hyuk-Sang;Jeon Sang-Soo;Lee Bong-Won;Kim Ki-Yeon;Jeon Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.65-77
    • /
    • 2005
  • This paper investigates the failure mechanism of geosynthetic-reinforced segmental retaining walls with tiered configuration using reduced-scale model tests. The reduced scale model test set-up was established to simulate a 5 m high full-scale wall. The geometry and material properties used in the model test were determined based on the Similitude Laws. The wall failures in the model tests were successfully generated by their self weight without any surface loading and analyzed examining the digital video recordings. The failure mechanisms was examined with respect to the various offsets between the lower and upper teres and the reinforcement length. Based on the results the appropriateness of the current design guideline was discussed.

Reduced Scale Model Test for Reinforcement of Noise Barrier with Wood (축척모형실험에 의한 방음벽 보강용 수림 효과 연구)

  • 정성수;김용태;조승일;신수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1193-1196
    • /
    • 2003
  • Noise reduction effect of a pine tree which was used to reinforce a noise barrier was studied by using reduced scale model test. The result show that the pine tree itself was less effective but the combination of pine tree and noise barrier was good for reducing the noise and sight.

  • PDF

Reduced Scale Model Experiments and Numerical Simulation for Flow Uniformity in de-NOx SCR Reactor (배연탈질 SCR 반응기내 유동균일 화를 위한 축소모형실험 및 전산해석)

  • 이인영;김동화;이정빈;류경옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • SCR (Selective Catalytic Reduction) process is presently considered as one of the most effective techniques for removing nitric oxides from exhaust gases. In this study, based on the conceptually designed SCR reactor of 500 MW coal fired power plant. a reduced scale (1/20) SCR reactor model was made to analyze the flow pattern in front of catalyst layer according to the guide vane's design factors such as the number, interval, and angle of vanes. The results of the test were compared to those numerical simulation in order to assure the reliability of two methods. On the basis of our study. the critical Reynolds number (2.0$\times$ 10$^{5}$ ) was proposed for ensuring the similarity between the reduced scale model and the prototype of SCR reactor. Optimum design parameters of guide vanes were determined as follows, 4 vanes, the first vane angle of 93$^{\circ}$, and the vane intervals of 0.85 S/n, 1.05 S/n, 1.1 S/n, 1.0S/n, 1.0S/n (S: the distance of duct, n: the number of guide vanes). The excellent agreement between the results of the numerical simulation and the reduced scale model provides the validation of two methods for prediction of flow through SCR reactor.

  • PDF

Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements (수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

Seismic Performance Evaluation of Shear-Flexure RC Piers through Comparative test of Real Scale and Reduced Scale Model (실물 및 축소모형 비교실험을 통한 휨-전단 RC교각의 내진성능평가)

  • 곽임종;조창백;조정래;김영진;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.849-854
    • /
    • 2002
  • From the analysis results of some as-built drawings in national roadway bridges in Korea, many bridge piers are expected to show complex shear-flexural behaviour under earthquakes. But the previous research works about the seismic evaluation of bridges considered flexural behaviour RC piers only. In addition, the past bridge design specifications in Korea didn't include limitation on the amount of longitudinal lap splices in the plastic hinge zone of piers. Thus a large majority of non-seismically designed bridge piers in Korea may have lap splices in plastic hinge zone. In this study, prototype pier was selected among existent bridge piers whose failure mode is expected to be complex shear-flexural mode. And then, full scale and 1/2 reduced scale model RC piers with various longitudinal lap splice details were constructed. From the quasi static test results on these model RC piers, the effect of longitudinal lap splices on the seismic performance of bridges piers was analyzed. And the seismic capacity of the non-seismically designed shear-flexural RC piers was evaluated.

  • PDF

Physical Modeling of Geotechnical Systems using Centrifuge

  • Kim, Dong-Soo;Kim, Nam-Ryong;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.194-205
    • /
    • 2009
  • In geotechnical engineering, the mechanical characteristics of soil, the main material of geotechnical engineering, is highly related to the confining stress. Reduced-scale physical modeling is often conducted to evaluate the performance or to verify the behavior of the geotechnical systems. However, reduced-scale physical modeling cannot replicate the behavior of the full-scale prototype because the reduced-scale causes difference of self weight stress level. Geotechnical centrifuges are commonly used for physical model tests to compensate the model for the stress level. Physical modeling techniques using centrifuge are widely adopted in most of geotechnical engineering fields these days due to its various advantages. In this paper, fundamentals of geotechnical centrifuge modeling and its application area are explained. State-of-the-art geotechnical centrifuge equipment is also described as an example of KOCED geotechnical centrifuge facility at KAIST.

  • PDF