• Title/Summary/Keyword: Reduce Noise

Search Result 3,216, Processing Time 0.035 seconds

A Study on HDD Acoustic Noise Improvement Caused By Disk Resonance (HDD의 디스크 공진에 의한 소음 저감 연구)

  • 손진승;곽주영;조은형;고정석;이행수;홍민표;좌성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.39-45
    • /
    • 2001
  • As HDD moves into new emerging consumer markets, expectations on quietness, as well as performance, have increased. The acoustic noise of HDD seems to be closely related to excitation of the spindle motor system. Recently, as a simple approach to reduce disk vibration, thicker disk, which is 50 mil (1.27mm), starts to use in HDD industry. Noise spectrum of HDD with use of 50 mil disk shows the dominant peaks of 900 Hz, mainly caused by excitations of the disk due to air windage effect. In order to reduce noise at this specific frequency, squeeze air damping effect was investigated by extremely reducing the gap between the disk and the base platform.

  • PDF

Development of turbo-charger resonator (터보차져용 레조네이터 개발)

  • Hwang, Ho-Jun;Lee, Jung-Uk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.214-216
    • /
    • 2012
  • This paper relates to the automotive silencers reduce noise generated from the actual vehicle for the activity is based on was worth. To do this, the noise from cars to distinguish them by category, characteristics of turbo charger was designed to reduce noise. In order for the design of acoustic modeling using line dynamics, was analyzed using In house & the commercial software programs. Silencers have about several basic elements. Expand, collapse, perforated plate, and the combination are the basic reactive or dissipative elements. Finally, DFSS(design for six sigma) method was designed. and it was verified in vehicle test. The new developed silencers showed good performance vehicle test results. also, the net cost also indicated excellent results compared with other company.

  • PDF

Development of a Sliding-Plug Entrance Door System for Urban Electric Transit Unit to Reduce Inside Noise Level (전동차 소음저감을 위한 슬라이딩플러그 출입문 개발)

  • 서승일;임영호;신동국
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.112-117
    • /
    • 2002
  • Reduction of noise level in the cabin of urban transit unit is an important issue to enhance the comfortability of passengers. It is made clear that a cause of increased noise level in cabin is the imperfect airtightness of entrance doors. In this study, the sliding-plug door system is developed to reduce the noise level of cabins by securing the airtightness of entrance door. The sliding-plug door system is composed of air-driven engine, swing arms, guide rails, guide rollers and locking devices. It is economical owing to using the previous door engine system. It is also adequate for the platform system of our subway station. It was tested to prove the reliability of system and was applied to standard urban transit unit. The effectiveness of noise reduction in cabin resulting form the sliding-plug door system was confirmed by test results.

A Development of COS Holder to Reduce an Impact Ambient Noise (충격성 소음 감소용 COS 홀더 개발)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1062-1068
    • /
    • 2007
  • We are using COS to block the excess current and to protect the transformer. But the fuse of COS is melt due to the overload resulting from the excess current flows and it destroys an air severing relations to clear as strong arc happens. Such phenomenon induces an impact ambient noise and it gives the circumstance area resident or pedestrian the fear. Thus, it is necessary that we urgently need to control the ambient noise from the actual circumstances. In this study, we investigate the characteristic of an impact ambient noise associate with the melting state of the COS fuse and suggest the method to reduce the noise.

  • PDF

An Experimental Study on the Noise Reduction Method of HEV-relay Module (하이브리드 자동차용 계전기 모듈의 소음저감에 관한 실험적 연구)

  • Seo, Jae-Yong;Kim, Won-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.77-83
    • /
    • 2010
  • In this paper, the noise of HEV(hybrid electric vehicle)-relay module during the turn-on and turnoff switching is experimentally analyzed and an effective method is proposed to reduce the impact noise. First, enclosure methods of 100A relay part with urethane and silicon are tested to find out a better material to isolate the noise. This result shows that the urethane is a better for the noise isolation of relay, so the relays enclosed by urethane are installed in the relay module. Second, the noise of HEV-relay module is analyzed experimentally to identify the noise generation mechanism. From this result, it is found that the vibration transmitted to battery pack through bolt generates the structural borne noise with the frequency band of 200~2000 Hz, which is more serious when the switch is turned off. Finally, the direction of switching and the joint structure are modified in order to isolate the vibration transmitted to battery back. Both methods are very effective to reduce the switching noise.

A Study on Silencer Performance Assessment under Onboard Condition (선내 탑재된 소음기 성능평가 방법에 관한 연구)

  • Lee, Do-Kyung;Jin, Bong-Man;Lee, Cheul-Won;Kim, Nho-Sung;Choi, Su-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.176-183
    • /
    • 2005
  • The exhaust noise of auxiliary engine in ships is directly transmitted to bridge wing with only distance attenuation. It is not easy to find out practical treatment to be applied between exhaust pipe and bridge wing to reduce the transmission of the exhaust noise. In general, therefore, a silencer is fitted to reduce the exhaust noise and correspondingly noise of bridge wing. The silencer should be properly designed under the consideration of the frequency component of the exhaust noise and the required performance such as noise reduction or insertion loss. In general, the gas inside the exhaust pipe flows with high temperature and speed and thus onboard test condition is more adverse than the standard atmospheric condition. In this study, the test method to evaluate silencer performance using a probe microphone is introduced.

A Case Study of Root Cause Analyses and Remedies for High frequency Vibration of Globe Valve in Nuclear Power Plant Piping System (원자력 발전소 배관계 글로브 밸브의 고주파 진동 원인 분석 및 해결 사례)

  • Choi, Byoung-Hwa;Park, Soo-Il;Cheon, Chang-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • A case history is presented pertaining to high frequency piping vibration and noise caused by globe valve in the spent fuel pool cooling system of nuclear power plant. Frequency analyses were performed on the system to diagnose the problem and develop a solution to reduce the piping vibration and noise. The source of the high frequency and noise energy was traced to the globe valve located immediately downstream of the centrifugal pump by performing valve throttling test. Measurements of vibration and noise are presented to show that the high frequency vibration and noise amplitude was dependent upon the valve disc position and flow rate. Strouhal vortex shedding frequencies were generated at the exit of the globe valve which exited structural resonance of valve disc and amplified the high frequency vibration and noise. The problem was identified as an interaction between the flow inside globe valve and the valve disc structure. Attempts to reduce the vibration and noise amplitudes of the piping system were successfully achieved by the modification of guide-disc diameter and disc-edge figure The valve disc was replaced by an alternative to eliminate the source of the harmful high frequency vibration and noise.

  • PDF

The Passenger Car Equivalence Models for Noise Level of Large Vehicles (대형차 소음환산계수 산정방법)

  • Yu, Wan;Lee, Seung-Ju
    • Journal of the Korean Regional Science Association
    • /
    • v.6 no.1
    • /
    • pp.57-68
    • /
    • 1990
  • The purpose of this study is to develop the models to predict the noise PCE (Passenger Car Equivalence) of large running vehicles through noise prediction models. The noises were measured at the distance of 7.5M, 11.0M, and 14.5M from the noise source with test vehicles running at the speed of 40 Km/h, 60 Km/h, and 80 Km/h while normal traffic were detoured. Total noise levels were measured while vehicles were running at given speeds, Engine noise level was considered as the noise of its idle running at the three vehicle speeds shown above friction noise level was ascertained by moving the vehicle at given speeds without the engin operating. The noise prediction models for each noise source were developed by factors which affect to the each noise level. As a result of this paper, the reduction of total vehicle noise by increasing the distance to the noise source from 10 M to 15 M is as much as that by dropping its speed from 60 Km/h to 40 Km/h. Also, the reduction of PCE of total noise of large vehicle by making the noise source to that by reducing its speed from 80 Km/h to 60 Km/h. Enging noise PCE, which is in range between 65 and 160, is larger than friction noise PCE which is in range 3.5 and 5.5. Engin noise is the main noise of the large vehicles while friction noise is that of the small vehicles. Machine noise for large vehicles, and engin noise for small vehicles should be tightly controlled to reduce the vehicle noise. A low noise engine and tire, and the shape of vehicle body are needed to be developed to reduce noise further.

  • PDF

Noise Fighting in Construction Equipments (건설기계의 소음저감기술)

  • Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.109-112
    • /
    • 2005
  • Since 1989, when the first European noise regulation against construction equipments came into force, much investigation had been devoted to reduce the noise and had produced the remarkable improvement in noise reduction technology. EU Directive 2000/14/EC Stage 2, more stringent noise regulation, is going to be implemented from Jan. 2006. The technology trends and examples for noise reduction in typical construction equipment R&D is described briefly.

  • PDF

The DOE Based Robust Design to Reduce the Brake Squeal Noise (실험계획법에 기반한 브레이크 스퀼 노이즈 저감을 위한 강건 설계)

  • Kwon, Seong-Jin;Kim, Mun-Sung;Lee, Bong-Hyun;Lee, Dong-Won;Bae, Chul-Yong;Kim, Chan-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.126-134
    • /
    • 2007
  • Although there has been substantial research on the squeal noise for the automotive brake system, robust design issues with respect to control factors equivalent to design variables in optimization, noise factors due to system uncertainties, and signal factors designed to accommodate a user-adjustable setting still need to be addressed. For the purpose, the robust design applied to the disk brake system has been investigated by DOE (Design of Experiments) based Taguchi analysis with dynamic characteristics. The specific goal of this methodology is to identify a design with linear signal-response relationship, and variability minimization. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. As the practical robust design to reduce the brake squeal noise, material properties of pad, disk, and backplate, thickness and geometry of pad are selected as control factors, material properties of pad and disk, and the contact stiffness have been considered as noise factors, and friction coefficient between pad and disk is chosen as a signal factor. Through the DOE based robust design, the signal-to-noise ratio and the sensitivity for each orthogonal array experiment have been analyzed. Also, it has been proved that the proposed robust design is effective and adequate to reduce the brake squeal noise.