• 제목/요약/키워드: Redshift

검색결과 393건 처리시간 0.024초

Selection of High Redshift Quasars with Multi-wavelength Data

  • Jeon, Yiseul
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.28.2-28.2
    • /
    • 2015
  • High redshift quasars (z > 5) hold keys to understanding the evolution of the universe in its early stage. Yet, the number of high redshift quasars uncovered from previous studies is relatively small (70 or so), and are concentrated mostly in a limited redshift range (z ~ 6). To understand the early mass growth of supermassive black holes and the final stage of the cosmic reionization, it is important to find a statistically meaningful sample of quasars with various physical properties. Here we present a survey for high redshift quasars at 5 < z < 7. Through color selection techniques using multi-wavelength data, we found quasar candidates and carried out imaging follow-up observations to reduce contaminants. After optical spectroscopy, we discovered eight new quasars. We obtained near-infrared spectra for 3 of these 8 quasars, measured their physical properties such as black hole masses and Eddington ratios, and found that the high redshift quasars we discovered are growing via accretion more vigorous than those of their lower redshift counterparts. We estimated the quasar number densities from our discoveries and compared them to those expected from the quasar luminosity functions in literature. In contrast to the observed number density of quasars at z ~ 5, which agrees with literature, the observed number density at z ~ 7 shows values lower than what is expected, even after considering an extrapolated number density evolution. We conclude that the quasar number density at z ~ 7 declines toward higher redshift, more steeply than the empirically expected evolution.

  • PDF

A New Selection Strategy of High Redshift Quasars: Medium-Band Observation with SQUEAN

  • Jeon, Yiseul;Im, Myungshin;Pak, Soojong
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.78.3-78.3
    • /
    • 2015
  • About 70 high redshift quasars with $z{\geq}5$ have been discovered through combinations of standard broad-band filters to distinguish them from contaminating sources. However, among the discovered quasars so far, there is a redshift gap at $5{\leq}z{\leq}6$ due to the limitation of traditional filter sets and selection techniques. To understand the early mass growth of supermassive black holes and the final stage of the cosmic reionization, it is important to find a statistically meaningful sample of quasars with various physical properties. Here we suggest a new selection technique of high redshift quasars using medium-band filters: nine filters with bandwidths of 50nm and central wavelengths from 625 to 1025nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with R~15. We installed these filters to SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1m telescope at McDonald Observatory, and conducted test observations of known high redshift quasars at $4.7{\leq}z{\leq}6.1$ and also dwarf stars for comparison. We found differences in SED shapes between high redshift quasars and dwarf stars, determined their locations on color-color diagrams, and demonstrated that the medium-band filters can enhance the efficiency of selecting robust quasar candidates in this redshift range. In this poster, we propose an effective selection method of high redshift quasars using these medium-band filters and discuss its effect on our high redshift quasar survey.

  • PDF

High Redshift Quasar Survey

  • Jeon, Yiseul;Im, Myungshin
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.69.1-69.1
    • /
    • 2013
  • We describe a survey of quasars in the early universe beyond z=5, which is one of the main sciences of the Infrared Medium-deep Survey (IMS) performed by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data such as SDSS, CFHTLS, UKIDSS, and SWIRE, which provide deep images over wide areas sufficient enough for searching high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope (UKIRT) with a depth of ~23 AB and survey area of ~100 $deg^2$, which makes IMS the most suitable survey for finding high redshift quasars at z~7. Also for the quasar candidates at z~5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN), which are efficient for selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable to the specific redshift ranges, which can reduce the contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of super massive black holes since z~7. Also by expanding the quasar sample at 5

  • PDF

Post-reionization Kinetic Sunyaev-Zel'dovich Effect in Illustris Simulation

  • Park, Hyunbae;Sabiu, Cristiano;Li, Xiao-dong;Park, Changbom;Kim, Juhan
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.52.2-53
    • /
    • 2017
  • We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured 2pCF. The shape of the 2pCF exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large scale structure surveys, especially photometric surveys such as DES, LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  • PDF

ENVIRONMENTAL DEPENDENCE OF STELLAR POPULATION PROPERTIES OF HIGH-REDSHIFT GALAXIES

  • LEE, SEONG-KOOK;IM, MYUNGSHIN;KIM, JAE-WOO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.413-415
    • /
    • 2015
  • How galaxy evolution differs in different environments is one of the intriguing questions in the study of structure formation. While galaxy properties are clearly distinguished in different environments in the local universe, it is still an open issue what causes this environmental dependence of various galaxy properties. To address this question, in this work, we investigate the build-up of passive galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing on its dependence on galaxy environment. In the UKIDSS/Ultra Deep Survey (UDS) field, we identify high-redshift galaxy cluster candidates within this redshift range. Then, using deep optical and near-infrared data from Subaru and UKIRT available in this field, we analyze and compare the stellar population properties of galaxies in the clusters and in the field. Our results show that the environmental effect on galaxy star-formation properties is a strong function of redshift as well as stellar mass - in the sense that (1) the effect becomes significant at small redshift, and (2) it is stronger for low-mass ($M_{\ast}<10^{10}M_{\odot}$) galaxies. We have also found that galaxy stellar mass plays a more significant role in determining their star-formation property - i.e., whether they are forming stars actively or not - than their environment throughout the redshift range.

HIGH REDSHIFT QUASAR SURVEY WITH IMS

  • JEON, YISEUL;IM, MYUNGSHIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.405-407
    • /
    • 2015
  • We describe a survey of quasars in the early universe, beyond z ~ 5, which is one of the main science goals of the Infrared Medium-deep Survey (IMS) conducted by the Center for the Exploration of the Origin of the Universe (CEOU). We use multi-wavelength archival data from SDSS, CFHTLS, UKIDSS, WISE, and SWIRE, which provide deep images over wide areas suitable for searching for high redshift quasars. In addition, we carried out a J-band imaging survey at the United Kingdom InfraRed Telescope with a depth of ~23 AB mag and survey area of ${\sim}120deg^2$, which makes IMS a suitable survey for finding faint, high redshift quasars at z ~ 7. In addition, for the quasar candidates at z ~ 5.5, we are conducting observations with the Camera for QUasars in EArly uNiverse (CQUEAN) on the 2.1m telescope at McDonald Observatory, which has a custom-designed filter set installed to enhance the efficiency of selecting robust quasar candidate samples in this redshift range. We used various color-color diagrams suitable for the specific redshift ranges, which can reduce contaminating sources such as M/L/T dwarfs, low redshift galaxies, and instrumental defects. The high redshift quasars we are confirming can provide us with clues to the growth of supermassive black holes since z ~ 7. By expanding the quasar sample at 5 < z < 7, the final stage of the hydrogen reionization in the intergalactic medium (IGM) can also be fully understood. Moreover, we can make useful constraints on the quasar luminosity function to study the contribution of quasars to the IGM reionization.

Redshift Space Distortion on the Small Scale Clustering of Structure

  • Park, Hyunbae;Sabiu, Cristiano;Li, Xiao-dong;Park, Changbom;Kim, Juhan
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.78.3-78.3
    • /
    • 2017
  • The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. The shape of the two-point correlation of galaxies exhibits a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. In our previous works, we can made use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This current work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities. We now aim to understand the redshift evolution of the full shape of the small scale, anisotropic galaxy clustering and give a firmer theoretical footing to our previous works.

  • PDF

Constraining Physical Properties of High-redshift Galaxies : Effects of Star-formation Histories

  • 이성국
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • Constraining physical (or stellar population) properties - such as stellar mass, star-formation rate, stellar population age, and dust-extinction - of galaxies from observation is crucial in the study of galaxy evolution. This is very challenging especially for high-redshift galaxies, and a widely-used method to estimate physical properties of high-redshift galaxies is to compare their photometric spectral energy distributions (SEDs) to spectral templates from stellar population synthesis models. I will show that the SED-fitting results of high-redshift galaxies are strongly dependent on the assumed forms of star-formation histories. I will also present the results of SED-fitting analysis of observed Lyman-break galaxies which show that parametric models with gradually increasing star-formation histories provide better estimates of physical parameters of high-redshift (z>3) star-forming galaxies than traditionally-used exponentially declining star-formation histories. This result is also consistent with the predictions from the modern galaxy formation models.

  • PDF

Evolution of Star Formation Rate - Density Relation over Cosmic Time in a Simulated Universe: the Observed Reversal Reproduced

  • Hwang, Ho Seong;Shin, Jihye;Song, Hyunmi
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.65.3-66
    • /
    • 2020
  • We use the IllustrisTNG cosmological hydrodynamical simulation to study the evolution of star formation rate (SFR)-density relation over cosmic time. We construct several samples of galaxies at different redshifts from z=2.0 to z=0.0, which have the same comoving number density. The SFR of galaxies decreases with local density at z=0.0, but its dependence on local density becomes weaker with redshift. At z≳1.0, the SFR of galaxies increases with local density (reversal of the SFR-density relation), and its dependence becomes stronger with redshift. This change of SFR-density relation with redshift still remains even when fixing the stellar masses of galaxies. The dependence of SFR on the distance to a galaxy cluster also shows a change with redshift in a way similar to the case based on local density, but the reversal happens at a higher redshift, z~1.5, in clusters. On the other hand, the molecular gas fraction always decreases with local density regardless of redshift at z=0.0-2.0 even though the dependence becomes weaker when we fix the stellar mass. Our study demonstrates that the observed reversal of the SFR-density relation at z≳1.0 can be successfully reproduced in cosmological simulations. Our results are consistent with the idea that massive, star-forming galaxies are strongly clustered at high redshifts, forming larger structures. These galaxies then consume their gas faster than those in low-density regions through frequent interactions with other galaxies, ending up being quiescent in the local universe.

  • PDF

The Alcock-Paczynski effect via clustering shells

  • Sabiu, Cristiano G.;Lee, Seokcheon;Park, Changbom
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.58.2-58.2
    • /
    • 2013
  • Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. In this talk we propose a novel technique to extract the Alcock-Paczynski, geometric, distortion information from the anisotropic clustering of galaxies in 3-dimensional redshift space while minimizing non-linear clustering and peculiar velocity effects. We capitalize on the recent, large dataset from the Sloan Digital Sky Survey III (SDSS-III), which provides a large comoving sample of the universe out to high redshift. We focus our analysis on the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass (CMASS) sample of 549,005 bright galaxies in the redshift range 0.43

  • PDF