• Title/Summary/Keyword: Redox reaction

Search Result 372, Processing Time 0.027 seconds

Synthesis and Electrochemical Studies of Cu(II) and Ni(II) Complexes with Tetradentate Schiff Base Ligands

  • 조기형;정병구;김정희;전승원;임채평;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.850-856
    • /
    • 1997
  • A series of tetradentate Schiff-base ligands; 1,3-bis(salicylideneimino) propane, 1,4-bis(salicylideneimino)butane, and 1,5-bis(salicylideneimino)pentane, and their Cu(Ⅱ) and Ni(Ⅱ) complexes have been synthesized. The properties of ligands and complexes have been characterized by elemental analysis, IR, NMR, UV-Vis spectra, molar conductance, and thermogravimetric anaylsis. The mole ratio of Schiff base to metal at complexes was found to be 1 : 1. All complexes were four-coordinated configuration and non-ionic compound. The electrochemical redox processes of the ligands and their complexes in DMF solution containing 0.1 M TEAP as supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry at glassy carbon electrode, and by controlled potential coulometry at platinum gauze electrode. The redox process of the ligands was highly irreversible, whereas redox process of Cu(Ⅱ) and Ni(Ⅱ) complexes was observed as one electron transfer process of quasi-reversible and diffusion-controlled reaction. Also the electrochemical redox potentials of complexes were affected by chelate ring size of ligands. The diffusion coefficients of Cu(Ⅱ) and Ni(Ⅱ) complexes in DMF solution were determined to be 4.2-6.6×10-6 cm2/sec. Also the exchange rate constants were determined to be 3.6-9.7×10-2 cm/sec.

Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System

  • Lueangjaroenkit, Piyangkun;Teerapatsakul, Churapa;Sakka, Kazuo;Sakka, Makiko;Kimura, Tetsuya;Kunitake, Emi;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.217-229
    • /
    • 2019
  • Two manganese peroxidases (MnPs), MnP1 and MnP2, and a laccase, Lac1, were purified from Trametes polyzona KU-RNW027. Both MnPs showed high stability in organic solvents which triggered their activities. Metal ions activated both MnPs at certain concentrations. The two MnPs and Lac1, played important roles in dye degradation and pharmaceutical products deactivation in a redox mediator-free system. They completely degraded Remazol brilliant blue (25 mg/L) in 10-30 min and showed high degradation activities to Remazol navy blue and Remazol brilliant yellow, while Lac1 could remove 75% of Remazol red. These three purified enzymes effectively deactivated tetracycline, doxycycline, amoxicillin, and ciprofloxacin. Optimal reaction conditions were $50^{\circ}C$ and pH 4.5. The two MnPs were activated by organic solvents and metal ions, indicating the efficacy of using T. polyzona KU-RNW027 for bioremediation of aromatic compounds in environments polluted with organic solvents and metal ions with no need for redox mediator supplements.

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

Synthesis and Electrochemical Studies of Ni(Ⅱ) Complexes with Tetradentate Schiff Base Ligands

  • 정병구;임채평;국성근;조기형;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • A series of tetradentate Schiff base ligands; [1,2-bis(naphthylideneimino)ethane, 1,3-bis(naphthylideneimino)propane, 1,4-bis(naphthylideneimino)butane, and 1,5-bis(naphthylideneimino)pentane] and their Ni(Ⅱ) complexes have been synthesized. The properties of these ligands and their Ni(Ⅱ) complexes have been characterized by elemental analysis, IR, NMR, UV-vis spectra, molar conductance, and thermogravimetric analysis. The mole ratio of Schiff base to Ni(Ⅱ) metal was found to be 1:1. The electrochemical redox process of the ligands and their Ni(Ⅱ) complexes in DMF and DMSO solution containing 0.1 M tetraethyl ammonium perchlorate (TEAP) as a supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry at glassy carbon electrode. The redox process of the ligands was highly irreversible, whereas redox process of Ni(Ⅱ) complexes were observed as one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials of the Ni(Ⅱ) complexes were affected by the chelate ring size of ligands. The diffusion coefficients of Ni(Ⅱ) complexes containing 0.1 M TEAP in DMSO solution were determined to be 5.7-6.9 × 10-6 cm2/sec. Also the exchange rate constants were determined to be 1.8-9.5 × 10-2 cm2/sec. These values were affected by the chelate ring size of ligands.

Studying the Effect of Cation to the Formation of Iron Oxyhydroxide (양이온 성분이 수산화철 형성에 미치는 영향 조사)

  • Oh, Sei-Jin;Lee, Jae-Yong;Kwon, Soon-Ju;Yoo, Jang-Yong;Choo, Wung-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.796-802
    • /
    • 2002
  • Effect of nine different cations to the formation of iron oxyhydroxide was studied using Mossbauer spectroscopy, XRD and BET. The Redox Potential and pH were measured for the determination of the internal reaction rate, as well. The phases of iron oxyhydroxide could not be the same with each other, due to the present of different cations in solution. Although the oxyhydroxide compound were composed of the same phases, the fraction of each phase was different from each other. The internal reaction rate was varied by the substitution of cation. It could be a cause of the different phase and particle size of oxyhydroxide compound.

Thermal Behavior of NiFe2O4 for Hydrogen Generation (NiFe2O4를 이용한 열화학 사이클 H2 제조)

  • Han, S.B.;Kang, T.B.;Joo, O.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • The thermal behavior of $NiFe_2O_4$ prepared by a solid-state reaction was investigated for $H_2$ generation by the thermochemical cycle. The reduction of $NiFe_2O_4$ started from $800^{\circ}C$, and the weight loss was 0.2-0.3 wt% up to $1000^{\circ}C$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidation of reduced $NiFe_2O_4$. The crystal structure of $NiFe_2O_4$ maintained during the redox reaction of 5 cycles. From this observation, the lattice oxygen in $NiFe_2O_4$ is released without the structural change during the thermal reduction and oxygen deficient $NiFe_2O_4$ can be restored to the spinel structure of $NiFe_2O_4$.

Studies on the Electrochemical Properties for Rancidity of Linoleic Acid (리놀산의 산패에 대한 전기화학적 특성 연구)

  • 김우성;이송주
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.360-364
    • /
    • 2000
  • We studied the degree of rancidity of linoleic acid for the electrochemical redox reaction in time course and the kinetic parameters. The current of the linoleic acid was increased and the potential was shifted to the positive potential when scan rates were faster. The redox reaction of the linoleic acid was proceeding to totally irreversible and diffusion controlled reaction. From these results, diffusion coefficient(D$\_$o/) of linoleic acid was observed to 2.61$\times$10$\^$-6/ ㎠/s in the 0.1 M TEAP/DMF electrolyte solution. Also, exchange rate constant(K$\^$o/) was observed to 9.79$\times$10$\^$-11/ cm/s. The leaving time in air condition was found to affect the rancidity. We predicted that the product was carbonyl compounds.

  • PDF

Elucidation of Electrode Reaction of EuCl3 in LiCl-KCl Eutectic Melts through CV Curve Analysis

  • Kim, Tack-Jin;Jung, Yong-Ju;Kim, Si-Hyung;Paek, Seung-Woo;Ahn, Do-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.863-866
    • /
    • 2011
  • The electrode reaction of $Eu^{3+}$ in a LiCl-KCl eutectic melt has been re-examined using cyclic voltammetry (CV). In this work, for the first time, the kinetic details of a $Eu^{3+}/Eu^{2+}$ redox system have been completely elucidated, along with the thermodynamic property, through a curve fitting applied to experimental CV data, which were obtained in a wide scan rate range of 0.5 to 10 V/s. The simulated results showed an excellent fit to all experimental CV data simultaneously, even though the curve fittings were performed within a large dynamic range of initial transfer coefficient values, formal potentials, and standard rate constants. As a result, a proper formal potential, transfer coefficient, and standard rate constant for the $Eu^{3+}/Eu^{2+}$ redox system were successfully extracted using the CV curve fitting.

Electrochemical Behaviors of Bi3+ Ions on Inert Tungsten or on Liquid Bi Pool in the Molten LiCl-KCl Eutectic

  • Kim, Beom Kyu;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Liquid Bi pool is a candidate electrode for an electrometallurgical process in the molten LiCl-KCl eutectic to treat the spent nuclear fuels from nuclear power plants. The electrochemical behavior of Bi3+ ions and the electrode reaction on liquid Bi pool were investigated with the cyclic voltammetry in an environment with or without BiCl3 in the molten LiCl-KCl eutectic. Experimental results showed that two redox reactions of Bi3+ on inert W electrode and the shift of cathodic peak potentials of Li+ and Bi3+ on liquid Bi pool electrode in molten LiCl-KCl eutectic. It is confirmed that the redox reaction of lithium with respect to the liquid Bi pool electrode would occur in a wide range of potentials in molten LiCl-KCl eutectic. The obtained data will be used to design the electrometallurgical process for treating actinide and lanthanide from the spent nuclear fuels and to understand the electrochemical reactions of actinide and lanthanide at liquid Bi pool electrode in the molten LiCl-KCl eutectic.

The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple (수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과)

  • Chu, Cheonho;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.847-852
    • /
    • 2019
  • In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to $0.21Ah{\cdot}L^{-1}per\;cycle$ and it is better than that of the single cell test of AORFB operated without additive ($0.29Ah{\cdot}L^{-1}per\;cycle$).