• 제목/요약/키워드: Redox Potential

검색결과 382건 처리시간 0.026초

오르니틴 생산을 위한 회분식 배양에서 산화환원전위와 상태변수들간의 상관관계 (Correlation between Redox Potential and State Variables in Batch Cultures for Ornithine Production.)

  • 이태호;나정걸;장용근;정봉현
    • 한국미생물·생명공학회지
    • /
    • 제26권2호
    • /
    • pp.167-172
    • /
    • 1998
  • 의료용 아미노산인 오르니틴을 생산하는, 용존산소농도와 pH가 일정하게 유지되는 회분식 배양에서 산화환원전위의 시간에 따른 변화를 주요 발효 상태변수들(균체, 포도당, 오르니틴 농도)과 함께 관찰하였다. 산화환원전위는 배양상태를 반영하는 네 개의 다른 구간을 나타내었으며 특히 균체농도의 변화와 밀접한 관계가 있으며 오르니틴 농도에 의해서도 영향을 받음을 알 수 있었다. 산화환원전위와 발효상태변수들과의 상관관계를 구하기 위해 먼저 오르니틴 및 포도당이 산화환원전위에 미치는 영향을 별도의 실험을 통해 알아보았다. 이들 실험 결과들을 바탕으로 하여 산화환원전위의 발효상태변수에 대한 상관관계를 제시하였다. 이 상관관계는 산화 환원전위, 포도당 농도, 균체농도의 on-line data로부터 오르니틴 농도를 on-line 추정하는데 이용될 수 있을 것으로 기대된다.

  • PDF

Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향 (The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum)

  • 이진희;김성준;이재흥
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.76-81
    • /
    • 1991
  • 2l 발효조에서 pH6.9, 온도 $32^{\circ}C$일 때 당밀배지를 이용하여 Corynebacterium glutamicum의 영양요구성 유사체 내성변이주에 의한 라이신 발효시 산화환원 전위 (ORP)가 라이신 발효속도의 특성에 미치는 영향을 조사하였다. 희석률이 0.1$h ^1$일때 탄소원이 제한되건 로이신이 제한되건 산소가 제한되지 않는 한 최대의 대당수율 24를 보였으며, 이 때의 산화환원 전윈 값은 -60mV와 -100mV 범위에 해당하였다. 산화화원 전위 값이 -130mV의 매우 낮은 용존산소 조건하에서는 대당수율 밀 $q_s, q_p$ 등의 발효 반응속도 상수값들이 크게 감소하였으며 glvcine, alanine, valine을 포함하는 발효 부산물의 축적량이 매우 높아졌다.

  • PDF

Electrochemical Property of Immobilized Spinach Ferredoxin on HOPG Electrode

  • Nam Yun-Suk;Kim, You-Sung;Shin, Woon-Sup;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1043-1046
    • /
    • 2004
  • The stability and electrochemical properties of a self-assembled layer of spinach ferredoxin on a quartz substrate and on a highly oriented pyrolytic graphite electrode were investigated. To fabricate the ferredoxin self-assembly layer, dimyristoylphosphatidylcholine was first deposited onto a substrate for ferredoxin immobilization. Surface analysis of the ferredoxin layer was carried out by atomic force microscopy to verify the ferredoxin immobilization. To verify ferredoxin immobilization on the lipid layer and to confirm the maintenance of redox activity, absorption spectrum measurement was carried out. Finally, cyclic-voltammetry measurements were performed on the ferredoxin layers and the redox potentials were obtained. The redox potential of immobilized ferredoxin had a formal potential value of -540 mV. It is suggested that the redox-potential measurement of self-assembled ferredoxin molecules could be used to construct a biosensor and biodevice.

Study on Redox State of Environmental Pollutant

  • Choi, Chi-Nami;Yang, Hyo-Kyung;Na, Eun-Jung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_2호
    • /
    • pp.65-71
    • /
    • 2001
  • The chemical behavior and properties related to the redox state of environmental pollutants were investigated using electrochemical methods. Measurements were taken of variations in the redox potential and cyclic polarization current. The results established the influence of various factors, including concentration, temperature, salt, and pH, on the redox potential and current. These factors were determined to effect the result of the redox reaction. Optimum conditions were also established for each case. It was clearly established that the electrode reaction was from a reversible to an irreversible process, plus it was also mixing reaction current controlled.

  • PDF

진관내동 생태계보전지역에서 산화환원전위(Redox Potentia)의 월별 변화 (Seasonal Variation of Redox Potential in Jinkwannaedong Ecological Conservation Area)

  • 김재근
    • 한국습지학회지
    • /
    • 제6권2호
    • /
    • pp.65-71
    • /
    • 2004
  • 습지에서 물의 효과는 토양 속으로 공기의 확산을 방해한다는 것이다. 이로 인해 습지의 토양 속에서는 산화 상태가 환원상태로 바뀌는 생화학적인 과정을 유도하게 된다. 건조토양이 수화된 토양이 될 때 산화환원전위는 낮아지게 된다. 그러므로 산화환원전위를 통해 토양의 소화된 정도를 알 수 있고, 이를 통해 어느 정도 습지의 화학적 특징이 나타날 지를 예견할 수 있다. 그러므로 본 연구에서는 진관내동 생태계 보전지역의 습지 토양 특성을 파악하기 위하여 2003년 5월부터 2004년 3월까지 산화환원 전위를 측정하였다. 깊이별 산화환원전위는 5월 10 cm 깊이에서 가장 높은 200 mV를 보였고 25 cm 깊이에서 가장 낮은 0 mV를 나타내었다. 이후 모든 깊이에서 낮아져 7 월에는 약 -200 mV를 나타내었다. 이는 10월까지 지속되었으며, 이 후 깊이가 낮을수록 산화환원전위의 증가폭이 크게 나타났다. 20 cm 깊이에서 측정한 5군데의 결과는 모두 비슷한 변화 양상을 보여주었다. 즉, 식물의 성장기 동안에는 낮은 값을 유지하다가 비성장기에는 증가하였다. 이러한 결과로부터 진관내동 생태계 보전지역의 토양은 환원된 상태의 습지 토양 특성을 잘 나타내고 있으며, 메탄화과정이 일어나고 있음을 알 수 있다.

  • PDF

Peroxiredoxins and the Regulation of Cell Death

  • Hampton, Mark B.;O'Connor, Karina M.
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.72-76
    • /
    • 2016
  • Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.

Study on Electrochemical Properties of TBT(Tributyltin)

  • Park, Chil-Nam;Yang, Hyo-Kyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_4호
    • /
    • pp.173-179
    • /
    • 2001
  • The chemical behavior and properties of the redox state of environmental pollutants was investigated using electrochemical methods. The purpose was to measure the variations in the redox reaction of differential pulse polarograms and cyclic voltammograms. The results observed the influences on redox potential and current of various factors including concentration, temperature, salt, and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from reversible to irreversible processes. Also, it was mixing with reaction current controlled.

  • PDF

Chemical Properties of Co(II) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • 한국환경과학회지
    • /
    • 제11권2호
    • /
    • pp.131-137
    • /
    • 2002
  • The chemical behavior and properties on the redox state of environmental pollutant has been investigated by electrochemical methods. We carried out to measure the variations in the redox reaction of differential pulse polarogram and cyclic voltammogram. The results observed the influences on redox potential and current of various factors with temperature and pH. These were established factors as the effect of the redox reaction. It can be clearly recognized that the electrode reaction are from qusi-reversible to irreversible processes. Also, it was mixing with reaction current controlled. The bits-phenol A in the waste water was made to compound with cobalt ion and it take away from the separation into compound. The $Co(BPA)_2$ compound was not found to be dissociation in waste water. However, this compound is avery unstable(K=1.02) and for a while, it was to be a dissociation. Therefore, we believed that it was likely to a toxic substance.

Sulfur Redox Equilibrium in Mixed Alkali Silicate Glass Melts

  • Kim, Ki-Dong;Hwang, Jong-Hee
    • 한국세라믹학회지
    • /
    • 제48권3호
    • /
    • pp.205-210
    • /
    • 2011
  • The dependence of sulfur redox behavior and its diffusivity on temperature and composition was studied in mixed alkali silicate melts by means of square wave voltammetry (SWV) at different frequencies in a temperature range of $1000^{\circ}C$ to $1400^{\circ}C$. The voltammograms showed two reduction peaks at high frequency but only one peak at low frequency. Irrespective of $K_2O/(Na_2O+K_2O)$, each peak potential due to reduction of $S^{6+}$ to $S^{4+}$ and $S^{4+}$ to $S^0$ moved toward a negative direction with temperature decrease, and the peak current showed a strong dependence on frequency at a constant temperature. However, the compositional dependence of the peak potential showed an inconsistent behavior with an increase of $K_2O$. The mixed alkali effect was not observed in sulfur diffusion. This inconsistency of both peak potential and diffusion for compositional dependence may be derived from the strong volatilization of sulfur in melts.

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.