• Title/Summary/Keyword: Red shift

Search Result 294, Processing Time 0.028 seconds

The Effect of the ZnO Nanorod Surface on the Optical Property (ZnO 나노막대의 표면이 광학적 특성에 미치는 영향)

  • Cho, Hyun-Min;Rhee, Seuk-Joo;Cho, Jae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • We have studied the effect of the chemical composition of the ZnO nanorod surface on the optical characteristics. The surface was treated with H- and O-plasma at different surface temperatures. The chemical composition of the surface of the ZnO nanorod, being investigated by Auger Electron Spectroscopy(AES), was related to the Photoluminescence(PL) data reported in our previous results. The AES showed the opposite results for the $H_2$ and $O_2$ plasma treatments. The ratio of Zn to O on the surface of the ZnO nanorod increased in the case of $H_2$ plasma, while the composition rate of O increased after $O_2$ plasma treatment. The AES results seems to be correlated to the shift in PL peaks. The increase in the composition rate of Zn on the surface of ZnO nanorod is considered to cause the blue shift of the UV peak. On the contrary, the relative increase of O is considered to cause the red shift in PL peaks.

Fluorescence Spectroscopy Studies on Micellization of Poloxamer 407 Solution

  • Lee, Ka-Young;Shin, Sang-Chul;Oh, In-Joon
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.653-658
    • /
    • 2003
  • It has been reported that at low temperature region, poloxamers existed as a monomer. Upon warming, an equilibrium between unimers and micelles was established, and finally micelle aggregates were formed at higher temperature. In this study, the fluorescence spectroscopy was used to study the micelle formation of the poloxamer 407 in aqueous solution. The excitation and emission spectra of pyrene, a fluorescence probe, were measured as a function of the concentration of poloxamer 407 and temperature. A blue shift in the emission spectrum and a red shift in the excitation spectrum were observed as pyrene transferred from an aqueous to a hydrophobic micellar environment. From the $I_1/I_3 and I_{339}/I_{333}$ results, critical micelle concentration (cmc) and critical micelle temperature (cmt) were determined. Also, from the fluorescence spectra of the probe molecules such as 8-anilino-1-naphthalene sulfonic acid and 1-pyrenecarboxaldehyde, the blue shift of the $\lambda_{max}$ was observed. These results suggest a decrease in the polarity of the microenvironment around probe because of micelle formation. The poloxamer 407 above cmc strongly complexed with hydrophobic fluorescent probes and the binding constant of complex increased with increasing the hydrophobicity of the probe.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.

Tailoring the Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence of 2-(2'-Hydroxyphenyl)benzoxazole Derivatives

  • Seo, Jang-Won;Kim, Se-Hoon;Park, Sang-Hyuk;Park, Soo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1706-1710
    • /
    • 2005
  • The excited-state intramolecular proton transfer (ESIPT) fluorescence in the 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivatives with different electron donor and acceptor substituents was studied by spectroscopic and theoretical methods. Changes in the electronic transition, energy levels, and orbital diagrams of HBO analogues were investigated by the semi-empirical molecular orbital calculation and were correlated with the experimental spectral position of ESIPT keto emission. It was found that the presence of substituents, regardless of their nature, resulted in the red-shifted absorption relative to HBO. However, the spectral change of the ESIPT fluorescence was differently affected by the nature of substituent: hypsochromic shift with electron donor and bathochromic shift with electron acceptor.

Optical and Dielectric Properties of Reduced SrTiO3 Single Crystals

  • Kang, Bong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.278-281
    • /
    • 2011
  • The optical band gap energy for $SrTiO_3$ by reduction at high temperature was 3.15 eV. The reflectivity of reduced $SrTiO_3$ single crystals showed little variation, however, the reflectivity by the reduction condition had no effect. For the phonon mode at about 790 $cm^{-1}$, a blue-shift took place upon $N_2$ reduction and the decreased. However, a red-shift took place upon a $H_2-N_2$ reduction and the increased at the same phonon mode. With decreasing temperature the dielectric constant decreased rapidly. The thermal activation energies were 0.92-1.02 eV.

The Optical Property of Plasma-treated ZnO Nanorods (플라즈마 처리한 ZnO 나노막대의 광학적 특성)

  • Cho, Hyun-Min;Yu, Se-Gi;Cho, Jae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.230-234
    • /
    • 2009
  • Hydrogen and Oxygen plasma treatments have been done on sonochemical grow ZnO nanorods by varying treatment temperature and time, The changes(position and intensity) in ultraviolet(UV) peaks and green peaks of photoluminescence(PL) spectroscopy have been measured, Experimental results showed; i) in the case of hydrogen plasma treatment, the blue shift of UV peak and the increase of PL intensity of the UV peak were observed as the increase of the process time and temperature, ii) in the case of oxygen plasma treatment, the red shift of green peak was observed and the ratio of $I_{Green}/I_{UV}$ was also increased, as the increase of the process time and the temperature.

Optical Properties of Long Wave Infrared Spoof Plasmon using Hexagonal Periodic Silver Hole Arrays

  • Lee, Byungwoo;Kwak, Hoe Min;Kim, Ha Sul
    • Applied Science and Convergence Technology
    • /
    • v.25 no.2
    • /
    • pp.42-45
    • /
    • 2016
  • A two-dimensional metal hole array (2DMHA) structure is fabricated by conventional photo-lithography and electron beam evaporation. The transmittance of the 2DMHA is measured at long wave infrared (LWIR) wavelengths (${\lambda}{\sim}10$ to $24{\mu}m$). The 2DMHA sample shows transmittance of 70 and 67% at $15.4{\mu}m$ due to plasmonic resonance with perforated silver and gold thin films, respectively, under surface normal illumination at LWIR wavelengths. The measured infrared spectrum is separated into two peaks when the size of the hole becomes larger than a half-pitch of the hole array. Six degenerated plasmon modes (1,0) at the metal/Si surface split to three modes at an incident beam angle of $45^{\circ}$ with respect to the surface normal direction, and wavelength shifts of the transmitted spectrum are observed in a red shift and blue shift at the same time.

Charge Transfer Complex Formation of Amines with Organic Halides (I) (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (I))

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.121-125
    • /
    • 1967
  • The formation of a charge transfer complex between various amines and organic halogen compounds was closely investigated. A mixture of amine (piperidine, pyridine, diethylamine, ethylamine, triethylamine and triethanolamine) and organic halides(carbon tetrachloride and chloroform) was checked for its UV absorption spectrum in presence of n-hexane solvent. A red shift was observed. The formation of charge transfer complex was observed in the case of triethylamine and diethylamine, whereas the formation of contact complex was distinct in case of piperidine. The relation between the nucleophilicity of amines and their tendency of forming charge transfer complex was discussed.

  • PDF

Detection of Fake Jindo Hongju Using the pH-dependent Color Change of Gromwell (Lithospermum erythrorhizon) Pigment

  • Kim, Jungho;Bae, Yeong-Hwan;Choi, Kap-Seong
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.151-153
    • /
    • 1999
  • Gromwell (Lithospermum erythrorhizon) pigment solution and Jindo Hongju prepared in the laboratory showed characteristic pH-dependent color changes and a shift in absorption maxima. This phenomenon was not observed in the solution of the artificial food colorant Red No. 2 which was suspected to be used in the manufacture of fake Jindo Hongju. A few fake products could be detected by using the pH-dependent shift in absorption maxima among the Jindo Hongju on market.

  • PDF

Extraction Characteristics of Red Flower Cabbage Pigment (꽃양배추 색소의 추출특성)

  • Lee, Jang-Wook;Lee, Hyang-Hee;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.149-152
    • /
    • 2001
  • Extraction characteristics of anthocyanin pigment from red flower cabbage(Brassica oleracea L. var. acephala) as a new source of natural food colorant were investigated. The pigment extracted from red flower cabbage showed the characteristic bathochromic shift of the maximum wavelength of light absorption(${\lambda}_{max}$) as pH of the solution changed from pH 1 to 12. As the concentration of citric acid in the extraction solvent increased, extraction rate and total optical density(TOD) of the extract increased. Maximum TOD was obtained by using the extracting solvent including $0.8{\sim}1.0%$ citric acid and stable pigment solution was obtained by using the extracting solvent including $10{\sim}20%$ ethanol in distilled water. As a result, 10% ethanolic solution with 0.8% citric acid was decided as the optimum extraction solvent for the anthocyanin pigment from red flower cabbage. Within the experimental ranges, the extraction rate increased and therefore extraction time decreased as the extraction temperature increased. The times to reach a certain value of TOD i.e., 2.1 were 24, 8, 4 and 2 hours at extraction temperature of 5, 20, 40 and $60^{\circ}C$, respectively.

  • PDF