• Title/Summary/Keyword: Red Soil

Search Result 718, Processing Time 0.044 seconds

Effect of Neutralization of Red Mud on Arsenic Stabilization in Soils (레드머드 중화 방법에 따른 토양 중 비소의 안정화 특성 평가)

  • Woo, Jio;Kim, Eun Jung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.65-73
    • /
    • 2021
  • Since the amount of red mud, generated from aluminum smelting process as a by-product, has increased worldwide, the recycle and metal resource recovery from the red mud is becoming more important. In this study, in order to recycle the red mud as a soil stabilizer to remediate arsenic contaminated soils, neutralization of red mud was investigated. Red mud was neutralized by washing with distilled water and NaCl, CaCl2, FeCl3, and HCl solutions and heating at 200-800℃, and arsenic stabilization characteristics in soils were evaluated with the neutralized red mud. Although washing with distilled water was not effective in neutralizing red mud, the application of the washed red mud to soils lowered the soil pH compared to the application of untreated red mud. Among NaCl, CaCl2, FeCl3, and HCl solutions, washing with FeCl3 showed the most effective in lowering pH of the red mud from pH 10.73 to pH 4.26. Application of the neutralized red mud in soils resulted in quite different arsenic stabilization efficiency depending on soil samples. In M1 soil, which showed relatively high arsenic stabilization efficiency by untreated red mud, the neutralization of red mud resulted in little effect on arsenic stabilization in soil. On the other hand, in M2 soil, which showed low arsenic stabilization efficiency by untreated red mud, the neutralization of red mud increased arsenic stabilization significantly. Soil characteristics such as clay minerals and pH buffering capacity seemed to affect reactions between red mud and soils, which resulted in different effects of the red mud application on soil pH and arsenic stabilization efficiencies.

Daily Changes in Red-Pepper Leaf Surface Temperature with Air and Soil Surface Temperatures

  • Eom, Ki-Cheol;Lee, Byung-Kook;Kim, Young-Sook;Eom, Ho-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.345-350
    • /
    • 2014
  • This study was conducted to investigate the changes in daily surface temperature of red pepper leaf compared to air and soil surface temperature. The maximum, minimum and average daily temperatures of red pepper leaf were 27.80, 11.40 and $19.01^{\circ}C$, respectively, which were lower by 0.10, 7.60 and $3.86^{\circ}C$ than air temperature, respectively, and lower by 15.00, 0.0 and $4.38^{\circ}C$ than soil surface temperature, respectively. Mean deviations of the difference between measured and estimated temperature by the E&E Model (Eom & Eom, 2013) for the air and surface temperature of red pepper leaf and soil were 0.64, 1.82 and $4.77^{\circ}C$, respectively. The relationships between measured and estimated scaled factor of the air and surface temperature of red pepper leaf and soil were very close to the 1:1 line. Difference between air and surface temperature of red pepper leaf showed a linear decreasing function with the surface temperature of red pepper leaf. Difference between soil surface temperature and air and surface temperature of red pepper leaf linearly increased with the soil surface temperature.

Compressive Strength and Construction Characteristics of Environmentally Friendly Soil Concrete Pavement Using Red Mud Admixture (레드머드를 혼화재료로 사용한 친환경 흙포장의 압축강도 및 시공특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1059-1068
    • /
    • 2012
  • The purpose of this study was to develope the environmentally favorable method of roller compacted soil concrete pavement using industrial waste red mud. Red mud was the major solid waste produced in the process of alumina extraction from bauxite(Bayer process). For recycling purpose, red mud was treated and applied to use as concrete admixtures. To this end, laboratory test such as compressive strength of soil concrete, and field test such as construction characteristics of soil concrete pavement, had been conducted. From the study results, the compressive strength of soil concrete was strongly related to its matrix proportion and compaction energy. The optimum mix proportion was comprised of cement 300 $kg/m^3$, water 110 $kg/m^3$, fine aggregate 600 $kg/m^3$, course aggregate 1400 $kg/m^3$, red mud admixture 50 $kg/m^3$ and compaction energy above 2.86 $cm-kgf/m^3$. The $7^{th}$-day and $28^{th}$-day mean compressive strength of soil concrete were 43.8 MPa and 53.3 MPa each under the optimum condition. Pavement application of soil concrete using red mud admixture indicated that the proposed method was simple in case of construction and showed a good surface texture.

Porosity of Alkali-Activated Slag-Red Mud Soil Mixed Pavement of Red Mud Substitution Rate (알칼리활성화 슬래그-레드머드 흙포장재의 레드머드 대체율에 따른 기공특성)

  • Kang, Hye Ju;Kim, Byeong gi;Kim, Jae Hwan;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.91-92
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the pore characteristics of alkali-activated slag-red mud soil pavement according to the red mud content. The results showed that the porosity of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the red mud content increased.

  • PDF

Efflorescence Characteristics of Alkali-Activated Slag-Red Mud Soil Mixed Pavement of Red Mud Substitution Rate (알칼리활성화 슬래그-레드머드 흙포장재의 레드머드 대체율에 따른 백화 특성)

  • Kang, Hye Ju;Lee, Yeong;Oh, Du Yeon;Lee, Gyu Yeong;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.153-154
    • /
    • 2015
  • This study is alkali-activated slag-red mud soil mixed pavement of efflorescence characteristics analysis of mitigation measures is drawn to the red mud substitution rate in accordance with the alkali-activated slag-red mud soil mixed pavement of efflorescence characteristics were exhibited. As a result of alkali-activated slag-red mud soil mixed pavement is more substitution rate increases appeared to efflorescence is increased.

  • PDF

Red Mud를 이용한 토양 및 슬러지내 중금속 제거 특성

  • 김이태;배우근;김우정;정원식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.73-77
    • /
    • 2003
  • Red mud is a waste material formed during the production of alumina when the bauxite ore is subjected to caustic leaching. It is a brick-red colored highly alkaline (pH 10-12) sludge containing mostly oxides of iron, aluminum, titanium, and silica. Red mud, due to its high aluminum, iron, and calcium contents, has been suggested as a cheap adsorbent for removal of toxic metals (e.g., As, Cr, Pb, Cd) as well as for water or wastewater treatment. The basic advantage of red mud is its versatility in application. This study was conducted to evaluate the effect of red mud on stabilization and fixation of heavy metals (such as Pb, Cu, C $r^{6+}$, Cd, Zn) contained in the Al-coating sludge and soil. The results showed that the concentration of heavy metals leached from the treated sludge and soil was low, meeting the regulatory permit level.

  • PDF

Unconfined Compressive Strength of Soil-Cement Pavement with Recycled Red Mud (레드머드가 첨가된 흙-시멘트 포장의 일축압축강도)

  • Lee, Yunkyu;Baek, Seungcheol;Holtz, R.D.;Jeong, Dongyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • The unconfined compressive strength of soil-cement mixed with red mud, an industrial by-product of alumina production, was investigated in the laboratory. The investigation involved laboratory tests under the various conditions such as red mud content, cement content, fly ash content and ratio of soil replacement with sands. The unconfined compressive strength tests were performed at 7, 14 and 21 days after specimen preparation. Results of the study show that the unconfined compressive strength increased as red mud and fly ash content decreased and cement content increased. Increasing the soil replacement ratio with sands had an insignificant effect on compressive strength because the soil had a similar particle size as the replacement sands.

  • PDF

Effects of DTPA application on Growth of Red Pepper (Capsicum annuum L.) and Chemical Properties of Nutrient Accumulated Soil in Plastic film House

  • Kim, Myung Sook;Kim, Yoo Hak;Lee, Chang Hoon;Park, Seong Jin;Ko, Byong Gu;Yun, Sun Gang;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • This study was conducted to evaluate effects of diethylene triamine penta acetic acid (DTPA) treatment on growth of red pepper and nutrient availability to salt accumulated soil in the plastic film house. The treatments were no application (Control), chemical fertilizers (NPK), DTPA (0.06, 0.13, and 0.19 mM) and the half of chemical fertilizers (NPK) with DTPA 0.06 mM. Fruit yield of red pepper showed no significant difference between the treatments (control, NPK, DTPA 0.06 mM, 0.13 mM, except for DTPA 0.19 mM. Red peppers were killed by DTPA 0.19 mM treatment because the high concentration of DTPA was toxic to crop. However, dry mass (stem and leave) and nutrient uptake of red pepper in DTPA 0.06 mM treatment increased significantly compared with those of control. In particular, nutrient uptake of red pepper in DTPA 0.06 mM treatment increased in the order of Fe, Mn, and Zn > Ca and Mg > K, as the magnitude of the stability constants of DTPA. Thus the application of DTPA 0.06 mM was the most effective for the alleviation of nutrient accumulation in the plastic film house soils.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish- (밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우-)

  • 김철기;김진한;정하우;최홍규;권영현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

Characteristic of Wet Soil Concrete according to Liquefaction Red mud Addition Ratio (액상 레드머드 첨가율에 따른 습식 흙콘크리트의 특성)

  • Kang, Hye Ju;Hwang, Byoung Il;Woo, Mi Kyung;Lee, young Won;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.81-82
    • /
    • 2018
  • In this paper, we investigate the characteristics of wet soil concrete according to the addition ratio of liquefaction red mud addition rate by liquefying red mud. as a result, the compressive strength decreased and the water absorption ratio increased as the liquefaction red mud addition rate increased.

  • PDF