• Title/Summary/Keyword: Red River

Search Result 125, Processing Time 0.023 seconds

Aquatic and Riparian Flora of the Nakdonggang River Tributary (Sangju: Byeongseong-cheon, Buk-cheon, Oeseo-cheon) (낙동강 지류의 수생 및 수변 식물상(상주: 병성천, 북천, 외서천))

  • Hwang, Yong;Hong, Jeong-Ki
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.516-535
    • /
    • 2020
  • This study was conducted to provide information on local resource plants by identifying aquatic and Riparian flora. We investigated the aquatic and riparian floras in 3 streams(Byeongseong-cheon, Buk-cheon, Oeseo-cheon) from February to October 2019. 321 taxa (i.e. 300 species, 5 subspecies, 15 varieties 1 Cultivars from 203 genera of 78 families) of the vascular plants were found in the survey area. Byeongseong-cheon is 133 taxa, Buk-cheon is 233 taxa and Oeseo-cheon is 132 taxa. Among 321 taxa, we found 5 endemic species, 3 red list plants, and However, endangered plants were not found in 3 streams. Aquatic and Riparian plant 138 taxa(i.e. Aquatic plant 20 taxa, Riparian plant 118 taxa). Life forms is annual plant 43 taxa, biennial plant 24 taxa, perennial plant 71 taxa. Aquatic plant growth forms emergent hydrophyte 13 taxa, floating leaved hydrophyte 1 taxa, submerged hydrophyte 6 taxa. The number of floristic regional indicator plants was 15 (i.e. 1 species of IV degree, 3 taxa of III degree, 5 taxa of II degree, and 6 taxa of I degree). Approved foreign export plants 31 taxa. In addition, 52 naturalized plants were identified, and the percentage of Naturalized Index (NI) and Urbanization Index (UI) were 16.1%, and 16.2%, respectively. Vascular plant usability and reclassification result is Edible 213 species (66%), Medicinal 244 species (76%), Flavor 10 species (3%), Industrial 136 species (42%), Ornamental 137 species (36%), Restoration 117 species (36%), Compost 155 species (48%), Unknown 7 species (5%). We hope that our results provide reference data to set up strategy of resources plants, conservation of biodiversity in the 3 streams and Sangju-si areas.

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

Habitat characteristics and prediction of potential distribution according to climate change for Macromia daimoji Okumura, 1949 (Odonata: Macromiidae) (노란잔산잠자리(Macromia daimojiOkumura, 1949)의 서식지 특성 및 기후변화에 따른 잠재적 분포 예측)

  • Soon Jik Kwon;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim;Jae Heung Park;Yung Chul Jun
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • Macromia daimoji Okumura, 1949 was designated as an endangered species and also categorized as Class II Endangered wildlife on the International Union for Conservation of Nature (IUCN) Red List in Korea. The spatial distribution of this species ranged within a region delimited by northern latitude from Sacheon-si(35.1°) to Yeoncheon-gun(38.0°) and eastern longitude from Yeoncheon-gun(126.8°) to Yangsan-si(128.9°). They generally prefer microhabitats such as slowly flowing littoral zones of streams, alluvial stream islands and temporarily formed puddles in the sand-based lowland streams. The objectives of this study were to analyze the similarity of benthic macroinvertebrate communities in M. daimoji habitats, to predict the current potential distribution patterns as well as the changes of distribution ranges under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from April 2009 to September 2022. We adopted MaxEnt model to predict the current and future potential distribution for M. daimoji using downloaded 19 variables from the WorldClim database. The differences of benthic macroinvertebrate assemblages in the mainstream of Nakdonggang were smaller than those in its tributaries and the other streams, based on the surrounding environments and stream sizes. MaxEnt model presented that potential distribution displayed high inhabiting probability in Nakdonggang and its tributaries. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), SSP1 scenario was predicted to expand in a wide area and SSP5 scenario in a narrow area, comparing with current potential distribution. M. daimoji is not only directly threatened by physical disturbances (e.g. river development activities) but also vulnerable to rapidly changing climate circumstances. Therefore, it is necessary to monitor the habitat environments and establish conservation strategies for preserving population of M. daimoji.

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments (3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성)

  • JIHA KIM;BYOUNG-JU CHOI;JAE-SUNG CHOI;HO KYUNG HA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.77-100
    • /
    • 2024
  • Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

Territorial Expansion the King Võ (Võ Vương, 1738-1765) in the Mekong Delta: Variation of Tám Thực Chi Kế (strategy of silkworm nibbling) and Dĩ Man Công Man (to strike barbarians by barbarians) in the Way to Build a New World Order (무왕(武王, 1738-1765) 시기 메콩 델타에서의 영토 확장 추이: 제국으로 가는 길, '잠식지계(蠶食之計)'와 '이만공만(以蠻攻蠻)'의 변주)

  • CHOI, Byung Wook
    • The Southeast Asian review
    • /
    • v.27 no.2
    • /
    • pp.37-76
    • /
    • 2017
  • $Nguy{\tilde{\hat{e}}}n$ Cư Trinh has two faces in the history of territorial expansion of Vietnam into the Mekong delta. One is his heroic contribution to the $Nguy{\tilde{\hat{e}}}n$ family gaining control over the large part of the Mekong delta. The other is his role to make the eyes of readers of Vietnamese history be fixed only to the present territory of Vietnam. To the readers, $Nguy{\tilde{\hat{e}}}n$ Cư Trinh's achievement of territorial expansion was the final stage of the nam $ti{\acute{\hat{e}}n$ of Vietnam. In fact, however, his achievement was partial. This study pays attention to the King $V{\tilde{o}}$ instead of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh in the history of the territorial expansion in the Mekong delta. King's goal was more ambitious. And the ambition was propelled by his dream to build a new world, and its order, in which his new capital, $Ph{\acute{u}}$ $Xu{\hat{a}}n$ was to be the center with his status as an emperor. To improve my assertion, three elements were examined in this article. First is the nature of $V{\tilde{o}}$ Vương's new kingship. Second is the preparation and the background of the military operation in the Mekong Delta. The nature of the new territory is the third element of the discussion. In 1744, six years after this ascending to the throne, $V{\tilde{o}}$ Vương declared he was a king. Author points out this event as the departure of the southern kingdom from the traditional dynasties based on the Red River delta. Besides, the government system, northern custom and way of dressings were abandoned and new southern modes were adopted. $V{\tilde{o}}$ Vương had enough tributary kingdoms such as Cambodia, Champa, Thủy $X{\tilde{a}}$, Hoả $X{\tilde{a}}$, Vạn Tượng, and Nam Chưởng. Compared with the $L{\hat{e}}$ empire, the number of the tributary kingdoms was higher and the number was equivalent to that of the Đại Nam empire of the 19th century. In reality, author claims, the King $V{\tilde{o}}^{\prime}s$ real intention was to become an emperor. Though he failed in using the title of emperor, he distinguished himself by claiming himself as the Heaven King, $Thi{\hat{e}}n$ Vương. Cambodian king's attack on the thousands of Cham ethnics in Cambodian territory was an enough reason to the King $V{\tilde{o}}^{\prime}s$ military intervention. He considered these Cham men and women as his amicable subjects, and he saw them a branch of the Cham communities in his realm. He declared war against Cambodia in 1750. At the same time he sent a lengthy letter to the Siamese king claiming that the Cambodia was his exclusive tributary kingdom. Before he launched a fatal strike on the Mekong delta which had been the southern part of Cambodia, $V{\tilde{o}}$ Vương renovated his capital $Ph{\acute{u}}$ $Xu{\hat{a}}n$ to the level of the new center of power equivalent to that of empire for his sake. Inflation, famine, economic distortion were also the features of this time. But this study pays attention more to the active policy of the King $V{\tilde{o}}$ as an empire builder than to the economic situation that has been told as the main reason for King $V{\tilde{o}}^{\prime}s$ annexation of the large part of the Mekong delta. From the year of 1754, by the initiative of $Nguy{\tilde{\hat{e}}}n$ Cư Trinh, almost whole region of the Mekong delta within the current border line was incorporated into the territory of $V{\tilde{o}}$ Vương within three years, though the intention of the king was to extend his land to the right side of the Mekong Basin beyond the current border such as Kampong Cham, Prey Vieng, and Svai Rieng. The main reason was $V{\tilde{o}}$ Vương's need to expand his territory to be matched with that of his potential empire with the large number of the tributary kingdoms. King $V{\tilde{o}}^{\prime}s$ strategy was the variation of 'silkworm nibbling' and 'to strike barbarians by barbarians.' He ate the land of Lower Cambodia, the region of the Mekong delta step by step as silkworm nibbles mulberry leave(general meaning of $t{\acute{a}}m$ thực), but his final goal was to eat all(another meaning of $t{\acute{a}}m$ thực) the part of the Mekong delta including the three provinces of Cambodia mentioned above. He used Cham to strike Cambodian in the process of getting land from Long An area to $Ch{\hat{a}}u$ Đốc. This is a faithful application of the Dĩ Man $C{\hat{o}}ng$ Man (to strike barbarians by barbarians). In addition he used Chinese refugees led by the Mạc family or their quasi kingdom to gain land in the region of $H{\grave{a}}$ $Ti{\hat{e}}n$ and its environs from the hand of Cambodian king. This is another application of Dĩ Man $C{\hat{o}}ng$ Man. In sum, author claims a new way of looking at the origin of the imperial world order which emerged during the first half of the 19th century. It was not the result of the long history of Đại Việt empires based on the Red River delta, but the succession of the King $V{\tilde{o}}^{\prime}s$ new world based on $Ph{\acute{u}}$ $Xu{\hat{a}}n$. The same ways of Dĩ Man $C{\hat{o}}ng$ Man and $T{\acute{a}}m$ Thực Chi $K{\acute{\hat{e}}}$ were still used by $V{\tilde{o}}^{\prime}s$ descendents. His grandson Gia Long used man such as Thai, Khmer, Lao, Chinese, and European to win another man the '$T{\hat{a}}y$ Sơn bandits' that included many of Chinese pirates, Cham, and other mountain peoples. His great grand son Minh Mạng constructed a splendid empire. At the same time, however, Minh Mạng kept expanding the size of his empire by eating all the part of Cambodia and Cham territories.