• 제목/요약/키워드: Red OLED

검색결과 120건 처리시간 0.023초

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • 제43권6호
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

LiF/Al/LiF 구조를 적용한 OLED 소자의 발광 특성 (Emission Characteristics of OLEDs Using LiF/Al/LiF Structure)

  • 박연석;양재웅;주성후
    • 한국전기전자재료학회논문지
    • /
    • 제23권9호
    • /
    • pp.696-700
    • /
    • 2010
  • We fabricated red and blue organic light emitting display (OLEDs) which had the two kinds of multi-structure of ITO/HIL/HTL/EML/ETL/LiF/Al and ITO/HIL/HTL/EML/ETL/LiF/Al/LiF. In the case of red OLED that had LiF/Al/LiF structure compared to LiF/Al structure, the current density increased from 4.3 mA/$cm^2$ to 7.3 mA/$cm^2$, and the brightness increased from 488 cd/$m^2$ to 1,023 cd/$m^2$ at 7.0 V, and as a result the current efficiency was improved from 11.28 cd/A to 13.95 cd/A. Also in the case of blue OLED that had LiF on Al cathode layer, the current density increased from 1.2 mA/$cm^2$ to 1.8 mA/$cm^2$, and the brightness increased from 45 cd/$m^2$ to 85 cd/$m^2$ at 7.0 V, and as a result the current efficiency was improved from 3.69 cd/A to 4.82 cd/A. Through these experimental results it could be suggested that the LiF layer formed on Al prevents the oxidation of Al surface, and the electrode resistance become low with increase of supplied electrons, therefore the brightness and the efficiency are improved from the influence to the well-balanced bonding of electron and hole at emitting layer.

Red Fluorescent Organic Light-Emitting Diodes Using Modified Pyran-containing DCJTB Derivatives

  • Lee, Kum-Hee;Kim, Sung-Min;Kim, Jeong-Yeon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2884-2888
    • /
    • 2010
  • Two red fluorescent DCJTB derivatives (Red 1 and 2) based on modified pyrans were synthesized and their electroluminescent properties were investigated. Multilayered OLEDs were fabricated with the device structure of ITO/NPB (40 nm)/Red 1, 2 or DCJTB (0.5 or 1%): $Alq_3$ (20 nm)/$Alq_3$ (40 nm)/Liq (2 nm)/Al. All devices exhibited efficient red emissions. In particular, a device containing emitter Red 2 as a dopant in the emitting layer, the maximum luminance was $8737\;cd/m^2$ at 12.0 V, the luminous and power efficiencies were 2.31 cd/A and 1.25 lm/W at $20\;mA/cm^2$, respectively. The peak wavelength of the electroluminescence was 638 nm with the CIE (x,y) coordinates of (0.63, 0.36) at 7.0 V.

Maximizing the Efficiency Lifetime Product for Phosphorescent OLEDs

  • Adamovich, Vadim;Kwong, Raymond C.;Weaver, Michael S.;Hack, Mike;Brown, Julie J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.272-276
    • /
    • 2004
  • Great strides in organic light emitting device (OLED) technology have resulted in a number of commercial products. To continue this growth into large area displays, for example televisions, an understanding of the mechanisms that drive the OLED device efficiency and lifetime performance is critical. In this work, we consider maximizing the efficiency lifetime product based on phosphorescent OLED ($PHOLED^{TM}$) technology. We report green PHOLEDs with luminous efficiency of 82 cd/A, 5.7 V and 10,000 hours lifetime at 1,000 cd/$m^2$,red PHOLEDs with CIE of (0.67,0.33), 11 cd/A and 35,000 hours lifetime at 500 cd/$m^2$ and recent progress in blue demonstrating efficiencies of 18 cd/A at 200 cd/$m^2$.

  • PDF

Highly efficient, long living white PIN-OLEDs for AM displays

  • Murano, Sven;Vehse, Martin;He, Gufeng;Birnstock, Jan;Hofmann, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.239-244
    • /
    • 2007
  • Highly efficient and stable white PIN OLED structures have been developed with a focus on possible AM display applications. Due to the use of the novel air-stable Novaled n-dopant material NDN26, the mass production compatibility of the PIN approach is improved. With both a conventional n-dopant, NDN1, and a novel air-stable n-dopant, NDN26, similar performance in efficiency and lifetime are reached. Based on highly a stable red fluorescent emitter system, the Novaled PIN approach allows for reaching ultra-long lifetimes of 1,000,000 hours at a brightness of $1,000\;cd/m^2$, both for top and for bottom emission layouts. Furthermore, inverted PIN structures for a possible use in a-Si backplane applications for AM displays are shown. With a phosphorescent green emitter system it could be demonstrated that for bottom and inverted as well as non-inverted top emission, a brightness of $1,000\;cd/m^2$ can be reached at below 3 V. In addition to low operating voltages and long lifetimes, PIN OLEDs also enable for device structures with extremely low operating voltage drifts, a feature of increasing importance for future AM display developments.

  • PDF

불꽃놀이 형상과 OLED를 기반으로 한 패션 액세서리 디자인 제안 (Fashion Accessory Design Suggestions Using Firework Images with the OLED Display Platform)

  • 김선영
    • 한국의류학회지
    • /
    • 제35권10호
    • /
    • pp.1188-1198
    • /
    • 2011
  • This study proposes the use of firework shapes to design fashion accessories in the judgment that they are appropriate for the expression of creative images in consideration of the display of fireworks as a kind of entertainment and a festive symbol. This study promotes the sustainable application of firework shapes to develop the designs of fashion culture items that feature a distinctive personality and uniqueness. In this present study, the proposed fashion accessory design was intended to create an entertaining new atmosphere that uses an Organic Light Emitting Diode (OLED) that draws attention as a futuristic display. In terms of methodology, a literature review of firework shapes and OLED was conducted; in addition, Adobe Illustrator CS2 and Adobe Photoshop CS2 were used to develop six different standard motive designs with formative design elements represented by a variety of firework shapes. Each of the six motifs was further expanded with different color combinations. Rich images are produced with the use of pink, blue, purple, green, yellow, orange, and red, in conjunction with various OLED effects to express the three-dimensional images of fireworks. The motifs are applied to three types of items: bags, bracelets, and necklaces. For the video images, evening and tote bags, pendants, and bangles were used. Shifting images and lights should produce unique images as well as satisfy the consumer desire for entertainment. The Adobe Image Ready software was used to present the motive of fireworks applied to the design of fashion accessories in video images but not in still-cut images due to physical constraints of this paper.

Red Fluorescent Donor-π-Acceptor Type Materials based on Chromene Moiety for Organic Light-Emitting Diodes

  • Yoon, Jhin-Yeong;Lee, Jeong Seob;Yoon, Seung Soo;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1670-1674
    • /
    • 2014
  • Two red emitters, 2-(7-(4-(diphenylamino)styryl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 1) and 2-(7-(julolidylvinyl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 2) have been designed and synthesized for application as red-light emitters in organic light emitting diodes (OLEDs). In these red emitters, the julolidine and triphenyl moieties were introduced to the emitting core as electron donors, and the chrome-derived electron accepting groups such as 2-methyl-(4H-chromen-4-ylidene)malononitrile were connected to electron donating moieties by vinyl groups. To explore the electroluminescence properties of these materials, multilayered OLEDs using red materials (Red 1 and Red 2) as dopants in $Alq_3$ host were fabricated. In particular, a device using Red 1 as the dopant material showed maximum luminous efficiencies and power efficiencies of 0.82 cd/A and 0.33 lm/W at $20mA/cm^2$. Also, a device using Red 2 as a dopant material presented the CIEx,y coordinates of (0.67, 0.32) at 7.0 V.

투명 금속 음극을 이용한 전면발광 적색 인광 OLEDs의 전기 및 광학적 특성 (Electrical and Optical Properties of Red Phosphorescent Top Emission OLEDs with Transparent Metal Cathodes)

  • 김소연;하미영;문대규;이찬재;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.802-807
    • /
    • 2007
  • We have developed red phosphorescent top emission organic light-emitting diodes with transparent metal cathodes deposited by using thermal evaporation technique. Phosphorescent guest molecule, BtpIr(acac), was doped in host CBP for the red phosphorescent emission, Ca/Ag, Ba/Ag, and Mg/Ag double layers were used as cathode materials of top emission devices, which were composed of glass/Ni/2TNATA(15 nm)/${\alpha}$-NPD(35 nm)/CBP:BtpIr(acac)(40 nm, 10%)/BCP(5 nm)/$Alq_3$(5 nm)/cathodes. The optical transparencies of these metal cathodes strongly depend on underlying Ca, Ba, and Mg layers. These layers also strongly affect the electrical conduction and emission properties of the red phosphorescent top emission devices.

Highly Efficient Red Phosphorescent OLEDs Employing a Multifunctional Oligofluorene Host

  • Tsai, Ming-Han;Su, Hai-Ching;Wu, Chung-Chih;Wong, Ken-Tsung;Li, Wen-Ren
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.663-666
    • /
    • 2007
  • High-efficiency red phosphorescent OLEDs employing a novel red emitter and a multifunctional oligofluorene host are reported. With qazIr(acac) as the red phosphorescent dopant, a maximum external quantum efficiency of 19% and maximum power efficiency of 11 lm/W are achieved. In addition, single layer devices using such host and dopant materials have efficiencies up to 13%.

  • PDF