• Title/Summary/Keyword: Red Emission

Search Result 625, Processing Time 0.03 seconds

Twisted Intramoecular Charge-Transfer Behavior of a Pre-Twisted Molecule, 4-Biphenylcarboxylate Bonded to Poly(Methyl Methacrylate)

  • 강성관;안교덕;조대원;윤민중
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.972-976
    • /
    • 1995
  • A trace amount of 4-biphenylcarboxylate having a pre-twisted biphenyl moiety was attached to a poly(methyl methacrylate) side chain and the fluorescence properties of the chromophore were investigated in various solvents such as ethyl acetate and butyl chloride. At room temperature, the polymer exhibited a distinct red shift of the short wavelength emission (325 nm) and an enhanced emission intensity around 430 nm upon excitation at the absorption red edge. The temperature dependence of the intensity ratio (R) of the 325 nm emission to the 430 nm emission was observed when exciting at the red edge over the temperature range between -20 and 60 ℃. However, the temperature dependence was not observed when exciting at the shorter wavelength. The Arrhenius plot of the R value shows the activation energy of 6.0 kJ/mol which is in good agreement with the energy required for the twist of the biphenyl moiety. Together with the results of red edge excitation effects it was concluded that the pre-twisted geometry of the biphenyl moiety is preserved by the restriction of the polymer chain to facilitate the formation of the twisted intramolecular charge transfer (TICT) state upon excitation.

Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes

  • Jeong, Byoung-Seong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.214-218
    • /
    • 2021
  • We investigated the optimal stacked structure from the perspective of process architecture (PA) through emission spectrum analysis according to the wavelength of quantum dot (QD)-organic light-emitting diodes (OLED). We confirmed that the blue-light leakage through the QD can be minimized by increasing the QD filling density above a critical value in the red QD (R-QD) layer. In addition, when the thickness of red-color filter (R-CF) at the upper part of the R-QD increased to more than 3 ㎛, the leakage of blue light through the R-CF was effectively blocked, and a very sharp emission spectrum in the red wavelength band could be obtained. According to these outstanding results, we expect that the development of QD-OLED displays with very excellent color gamut can be possibly realized.

Nitrous Oxide Emissions from Red Pepper, Chinese Cabbage, and Potato Fields in Gangwon-do, Korea

  • Seo, Youngho;Kim, Gunyeob;Park, Kijin;Kim, Kyunghi;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.463-468
    • /
    • 2013
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission from agricultural field is essential to develop national inventories of greenhouse gases (GHGs) emission. The objective of the study was to develop emission factor to estimate direct $N_2O$ emission from agricultural field in Gangwon-do, Korea by measuring $N_2O$ emissions from potato (Solanum tuberosum), red pepper (Capsicum annum L.), and Chinese cabbage (Brassica campestris L.) cultivation lands from 2009 to 2012. Accumulated $N_2O$ emission was $1.48{\pm}0.25kg$ $N_2O-N\;ha^{-1}$ for red pepper, $1.27{\pm}0.27kg$ $N_2O-N\;ha^{-1}$ for potato, $1.49{\pm}0.06kg$ $N_2O-N\;ha^{-1}$ for Chinese cabbage cultivated in spring, and $1.14{\pm}0.22kg$ $N_2O-N\;ha^{-1}$ for fall Chinese cabbage. Emission factor of $N_2O$ calculated from accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0051{\pm}0.0016kg$ $N_2O-N\;ha^{-1}$ N for cropland in Gangwon province. More extensive study is deserved to be conducted to develop $N_2O$ emission factor for upland crops in Korea through examining the emission factors from various regions and crops because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Development of an alignment free mask patterning as a new fabrication method for high efficiency white organic light-emitting diodes

  • Joo, Chul-Woong;Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.752-754
    • /
    • 2009
  • High efficiency white organic light emitting diodes were fabricated by using an alignment free mask patterning method. Only red/green emission without any blue emission was observed in the red/green patterned region and blue emission was emitted in other area. A combination of the red/green and blue emission gave a high efficiency white emission. A maximum current efficiency of 30.7 cd/A and a current efficiency of 25.9 cd/A at 1000 cd/$m^2$ were obtained with a color coordinate of (0.38, 0.45).

  • PDF

Intramolecular Energy Transfer in Heteroleptic Red Phosphorescent Organic Light Emitting Diodes

  • Lee, Jun-Yeob;Kim, Sung-Hyun;Jang, Jyong-Sik
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.232-232
    • /
    • 2006
  • Intramolecular energy transfer in heteroleptic red phosphorescent dopant materials with mixed ligand units in one molecule was studied. 1-phenylisoquinoline(piq) and phenylpyridine(ppy) moieties were introduced as ligands for Ir based phosphorescent dopants and light emission mechanism was investigated. Intramolecular energy transfer from ppy ligand to piq ligand resulted in pure red emission without any green emission from ppy. Current efficiency of red devices was improved from 4 cd/A to 4.8 cd/A by using mixed ligand structures and deposition temperature of red dopant could be lowered by introducing ppy ligand.

  • PDF

Search for Mn4+-Activated Red Phosphor by Genetic Algorithm (유전 알고리즘을 이용한 Mn4+ 활성 적색 형광체 탐색)

  • Kim, Minseuk;Park, Woon Bae
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.312-317
    • /
    • 2017
  • In the construction of a white LED, the region of the red emission is a very important factor. Red light emitting materials play an important role in improving the color rendering index of commercial lighting. These materials also increase the color gamut of display products. Therefore, the development of novel phosphors with red emission and the study of color tuning are actively underway to improve product quality. In the present study, heuristic algorithms were used to search for phosphors capable of increasing the color rendering index and color gamut. Using a heuristic algorithm, the phosphors that were identified were $SrGe_4O_9:Mn^{4+}$ and $BaGe_4O_9:Mn^{4+}$. Emission spectra study confirmed that these phosphors emit light in the deep red wavelength region, which can fulfill the requirement for the improvement in color rendering index and color gamut for a white LED.

Effect of Nitrogen Application Rates on Nitrous Oxide Emission during Crop Cultivations in Upland Soil

  • Lee, Jong-Eun;Yun, Yeo-Uk;Choi, Moon-Tae;Jung, Suck-Kee;Nam, Yun-Gyu;Pramanik, Prabhat;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.3
    • /
    • pp.205-211
    • /
    • 2012
  • BACKGROUND: Generally, nitrogen (N) fertilization higher than the recommended dose is applied during vegetable cultivation to increase productivity. But higher N fertilization also increases the concentrations of nitrate ions and nitrous oxide in soil. In this experiment, the impact of N fertilization was studied on nitrous oxide ($N_2O$) emission to standardize the optimum fertilization level for minimizing $N_2O$ emission as well as increasing crop productivity. Herein, we developed $N_2O$ emission inventory for upland soil region during red pepper and Chinese milk vetch cultivation. METHODS AND RESULTS: Nitrogen fertilizers were applied at different rates to study their effect on $N_2O$ emission during red pepper and Chinese milk vetch cultivation. The gas samples were collected by static closed chamber method and $N_2O$ concentration was measured by gas chromatography. The total $N_2O$ flux was steadily increased due to increasing N fertilization level, though the overall pattern of $N_2O$ emission dynamics was same. Application of N fertilization higher than the recommended dose increased the values of both seasonal $N_2O$ flux (94.5% for Chinese cabbage and 30.7% for red pepper) and $N_2O$ emission per unit crop yield (77.9% for Chinese cabbage and 23.2% for red pepper). Nitrous oxide inventory revealed that the $N_2O$ emission due to unit amount of N application from short-duration vegetable field in fall (autumn) season (6.36 kg/ha) was almost 70% higher than that during summer season. CONCLUSION: Application of excess N-fertilizers increased seasonal $N_2O$ flux especially the $N_2O$ flux per unit yield during both Chinese cabbage and red pepper cultivation. This suggested that the higher N fertilization than the recommended dose actually facilitates $N_2O$ emission than boosting plant productivity. The $N_2O$ inventory for upland farming in temperate region like Korea revealed that $N_2O$ flux due to unit amount of N-fertilizer application for Chinese cabbage in fall (autumn) season was comparatively higher than that of summer vegetables like red pepper. Therefore, the judicious N fertilization following recommended dose is required to suppress $N_2O$ emission with high vegetable productivity in upland soils.

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.

Light Emitting Characteristics of Multi-layer OLEO Fabricated with DCM (DCM 계열을 이용한 OLED의 전기적인 발광 특성에 관한 연구)

  • Chun, Min-Ho;Yun, Suk-Won;Lim, Sung-Tack;Shin, Dong-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.57-60
    • /
    • 2002
  • In generally, the guest-emitter doped system has been reported to give a bright electroluminescence(EL). The purpose of using doped system is to improve for increasing lifetime and efficiency, and tuning multicolor light. This indicates an enhanced electron-hole recombination rate in emitting layer. The purpose of this study is to obtain the high performance EL devices for flat panel display with red emission. We fabricated EL devices using the guest-host system. where DCM derivatives were taken as a dopant. The devices are fabricated in multilayer system with various concentration of the dopant (red light emitting dye). We measured the I-V characteristics and EL spectra from these devices. and we compared with photoluminescence(PL) quantum yield among the DCM derivatives. The emission mechanism of devices is participated in energy transfer. The energy transfer from these hosts to DCM generates luminescence spectra that vary from yellow red to red, depending on DCM derivatives. Absorption and emission spectra of organic materials composing the devices depend on the emission materials doped with the DCM derivatives. We demonstrated that the high EL efficiency can be achieved by doping host material with DCM derivatives and molecular steric structures

  • PDF

Search for new red phosphors under NUV/blue excitation - the stimulating future for solid state lighting

  • Vaidyanathan, Sivakumar;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1350-1352
    • /
    • 2008
  • Research on down conversion phosphor materials is the key for the development of solid state lighting (SSL). Especially finding alternative red phosphor for white LEDs based on blue or NUV LEDs are important research task. Under this view, we have synthesized a series of $Eu^{3+}$ substituted $La_2W_{2-x}Mo_xO_9$ (x = 0 ~ 2, insteps of 0.1) red phosphor and characterized by X-ray diffraction (XRD) and photoluminescence. XRD results reveal a phase transition from triclinic to cubic structure for $x\;{\geq}\;0$. All the compositions show broad charge transfer band due to charge transfer from oxygen to tungsten/molybdenum and red emission due to $Eu^{3+}$ ions. Select compositions show high red emission intensity compared to the commercial red phosphor under NUV/blue ray excitation. Hence, this candidate can be possible red emitting phosphors for white LEDs.

  • PDF