• 제목/요약/키워드: Recycled-aggregate

검색결과 939건 처리시간 0.022초

A Basic Study on the Recycling of Dredged Sewage Sediment (하수도 준설토 재활용에 관한 기초 연구)

  • Kim, Hong Min;Choi, Yun Jeong;Yoon, Seok-Pyo;Kim, Jun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제26권3호
    • /
    • pp.33-37
    • /
    • 2018
  • In order to recycle sewage dredging soil, we analyzed particle size distribution and organic content of dredged sewage sediments. Based on this, it was determined that particles with relatively low organic content of 1.0 mm or more could be recycled as fine aggregate. Although it was inorganic at the size of 5 mm or more, it contained a number of foreign substances other than fine aggregate, which were needed to be removed with a sieve. Since there are volatile suspended solids between 1.0 and 5.0 mm size, they were removed by means of flotation. Fine aggregate was obtained from dredging soil by screening followed with flotation method, and the proportion of fine aggregate obtained in this study was around 38 %.

Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete (고밀도 폐유리의 차폐 콘크리트 잔골재로의 활용가능성 평가)

  • Choi, So-Yeong;Choi, Yoon-Suk;Won, Min-Sik;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2015
  • The quantities of heavy weight waste glass have been progressively increased because of the rapid industrialization and the change of quality of life. And, the most of them are not recycled. The heavy weight waste glass have been treated by illegal dumping or being buried in landfills. Meanwhile, in order to ensure the safety of nuclear power plant structure, the excellent construction materials are socially required for shielding performance. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. So, it is needed to investigate the possibility of recycling of heavy weight waste glass as concrete material ingredient. In this study, the heavy weight waste glass was evaluated for the applicability as fine aggregate of shielding concrete. From the results, when heavy weight waste glass was replaced as fine aggregate of mortar, shielding performance can be improved due to increasing in unit weight of mortar. It showed that the strength decreased according to mixing of heavy weight waste glass, Non-Washed heavy weight waste glass is more advantageous in the strength development than Washed case.

The Physical Properties of the Block Using Flame Resistant EPS Wastes (폐 난연성 EPS의 혼합조건에 따른 재생골재 블록의 물성에 관한 실험적 연구)

  • Cho, Kwang-Hyun;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.152-153
    • /
    • 2013
  • Based on the Fire Service Act of mandatory provision, new buildings are strictly forced to use fire protection materials. Flame resistant EPS is one of those materials. Unlike conventional EPS that can be fused to make EPS ingot and be recycled for various purposes, flame resistant EPS waste cannot be recycled due to the presence of protective coating that is applied to increase the fire protection properties of EPS. A suitable alternative that can process large amount of flame resistant EPS wastes needs to be developed, and one of the possible alternative is to use them as construction materials. In this research, experiments were designed to observe whether the flame resistant EPS wastes can be utilized as partial replacements of fine aggregates in cement mortar. The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, both compressive strength and absorption capacity met the Korean Standard specification for cement bricks and blocks, indicating that flame resistant EPS wastes can be used for construction purposes.

  • PDF

Blast Furnace Slag Powder High Volume Substitution Mortar Quality Increase Due To Changes in Desulfurized Plaster Processing Method (탈황석고의 처리방법 변화에 의한 고로슬래그 미분말 다량 치환 모르타르의 품질향상)

  • Song, Yuan-Lou;Park, Yong-Jun;Kim, Sang-sup;Lee, Dong-Yun;Jang, Duk-Bae;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.55-56
    • /
    • 2015
  • In this research the processing method of Desulfurized Plaster is changed to cyclotomy, 0.3mm sieve analysis and 500℃ heat exposure, and by changing the mix rate of the binding agent to 0~20%, it was applied to mortar that used natural aggregate and blast furnace slag for testing. The test results showed that the sieve analysis and high heat exposure of the flow and air volume increased according to the increase of mixing rate of FGD while the cyclotomy decreased. The setting time accelerated as the mixing rate of FGD increased, and the compression strength increased to its maximum when the mixing rate of FGD was right around 10%, and especially showed a high trend with cyclotomy and sieve analysis.

  • PDF

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • 제17권1호
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제58권1호
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제54권2호
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

Properties of Mortar according to Gradation change of Electric Arc Furnace Oxidizing Slag Fine Aggregate made by Rapidly Cooled Method (급냉 전기로 산화슬래그 잔골재의 입도 변화에 따른 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Choi, Sun-Mi;Kim, Ji-Ho;Lee, Won-Young;Oh, Sang-Youn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제6권4호
    • /
    • pp.112-118
    • /
    • 2012
  • Steel industry produces many by-products and wastes such as blast furnace slag, electric arc furnace slag, and converter slag. As in the case of rock, the main component of steel slag are CaO and $SiO_2$ ; further, steel slag is as alkaline as portland cement or concrete. Electric arc furnace oxidizing slag is possible to use as an aggregate for concrete ; however, it has been reclaimed because of it's expansibility caused by free CaO. Recently, a innovative rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to minimum level and increases the stability of iron oxide. Therefore, this study describes the results of a series of research to utilize globular shape of electric arc furnace oxidizing slag fine aggregates made by rapidly cooled method for the construction industry by cooling rapidly melted slag from the steel industry. First of all, an experiment was carried out to investigate the quality characteristics of rapidly cooled electric arc furnace oxidizing slag fine aggregates in order to determine whether they can be applied to the construction industry. Then, by applying them to concrete of various particle sizes, we explored experimentally the desired condition to apply rapidly cooled electric arc furnace oxidizing slag fine aggregates to concrete.

  • PDF

Application of Screenings by-product of Crushing Rock in Quarry as Lean Concrete Pavement (산업부산물인 스크리닝스의 활용도 증진을 위한 린콘크리트 적용성 평가)

  • Kang, Min-Soo;Lee, Kyung-Ha;Suh, Young-Chan;Kim, In-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제6권4호
    • /
    • pp.75-81
    • /
    • 2012
  • In case of crushing rock to produce materials for lean concrete subbase layer in concrete pavement, natural sand is used for the gradation adjustment of aggregates, and the percentage of natural sand used is 30%~40% of the weight ratio of aggregate mix. The supply of natural sand that is used in lean concrete as a fine aggregate is getting harder due to the current of exhaustion of source, and the cost for the purchase of natural sand is included in the cost of roadway construction. This study, therefore, was conducted in order to resolve the exhaustion of materials and economize in construction expenditure by the application of screenings, which is by-product of crushing rock in quarry, as an alternative to natural sand. As a result of a comparative analysis on the application of screenings and natural sand with typical types of rock that is produced in domestic, which was conducted in the first year, It is found out that the use of screenings as a fine aggregate showed better unconfined compression strength. Verification of actual application of screenings was conducted in the second year, after test construction and follow-up investigation. The compressive strength, compaction density, settlement of screenings applied case was higher than that of natural sand. Thus, it is expected that application of screenings to construction in field will contribute to the cost saving, material recycling and the protection of environment.

  • PDF