• Title/Summary/Keyword: Recycled paper

Search Result 590, Processing Time 0.024 seconds

Analysis of Disintegration Characteristics of OCC (골판지 고지의 해섬 특성 해석)

  • Lee Hak Lae;Youn Hye Jung;Lee Sang Gil;Kang Tae Young;Heo Young Dae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.4 s.107
    • /
    • pp.1-8
    • /
    • 2004
  • Linerboards and corrugating mediums are being produced using recycled old corrugated containers (OCC) as major raw materials. The utilization rate of recycled fibers is ex­pected to increase further in the future to reduce raw material cost. Use of recycled fibers as raw materials for linerboard, however, causes many problems for papermakers. As the utilization rate of recycled fiber and number of recycling of fibers increases, quality and process problems including strength reduction and deterioration of machine runn­ability will increase. To overcome the problem of strength reduction associated with the use of recycled fibrous materials for producing quality linerboards, diverse extensive research efforts and new technological approaches have been taken. In this study, disintegration characteristics of aee was evaluated by determining the unslushed contents. The amount of unslushed content of KOCC was lower than AOCC. But contaminants content of KOCC was higher than AOCC. As the consistency in disintegration increased, the amount of unslushed fiber content decreased.

Mechanical Impact Treatment on Pulp fibers and Their Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.56-62
    • /
    • 2002
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and increased bonding properties greatly. However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

Effects of Recycling on the Adsorption of Cationic Polyacrylamide onto Fiber and Fines (리사이클링 횟수에 따른 장섬유와 미세섬유의 폴리아크릴아미드 흡착특성 및 종이의 물성 변화)

  • 주성범;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Adsorption of polymeric flocculants and dry strength agents onto the surface of papermaking fibers is critical for their effective utilization since the polymeric substances not adsorbed on fibers or fines keep recirculating in the papermaking system to cause various operational difficulties and loss of raw materials. Problems associated with the unadsorbed polymeric substances generate great attention because unprecedent interests in utilization of recycled papers and papermaking system closure. In this study, to understand the effects of recycling on the adsorption propensity of cationic polyacryamide (PAM) dry strength resin onto hardwood bleached kraft pulp fibers and fines a systematic approach was followed. Never dried bleached hardwood kraft pulp was recycled in two different ways. In mode one recycling experiment never dried pulp was beaten then recycled three times by employing simple drying and disintegrating steps. In mode two recycling experiment beating of the recycled pulp was carried out after each recycling step. Adsorption of cationic PAM on fibers and fines was evaluated employing Kjeldahl nitrogen analysis method. The influence of recycling on water retention value, carboxyl content, sheet density and tensile strength of the pulp was examined. As the number of recycling increased, water retention value of the fiber was reduced due to hornification and this in turn caused a decrease in adsorption of cationic PAM. On the other hand, the carboxyl content of the recycled fibers increased because of the oxidation of fibers occurred during drying, and this caused an increase in adsorption of cationic PAM. Because of these two opposing factors the adsorption of the cationic PAM on the recycled fibers decreased and then increased slightly at third recycling step. Increase of PAM adsorption, however, did not provide did not provide and strength improvement for the recycled pulp fibers indicating greater influence of the honification on interfiber bonding.

  • PDF

Uniaxial Behavior of Reinforced Concrete Column with Recycled Fine Aggregate (순환잔골재를 치환한 철근콘크리트 기둥의 압축거동 특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.5-8
    • /
    • 2008
  • The use of recycled aggregates is increasing due to problems of lack of natural aggregates. But there are no appropriate design recommendations and basic data for structural members using recycled fine aggregate concrete. This paper is to evaluate compression behavior of reinforced concrete column with displacement level of recycled fine aggregate. For these purpose, four recycled fine aggregate replacement levels (0%, 30%, 60%, 100%) were considered in this paper. Four columns with 400mm${\times}$400mm in cross section are tested under axial load. Experimental results were compared using current code(KCI2007). Compressive strength of reinforced concrete columns with recycled fine aggregate showed higher than that provided in KCI 2007. The KCI provision were conservative and subsequently can be used for design of reinforced recycled fine aggregate concrete column.

  • PDF

Recycling Waste Concrete for Low-Volume Road Pavement (페콘크리트를 재활용한 소도로 포장에 관한 연구)

  • 김광우;류능환;최영규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.137-146
    • /
    • 1996
  • This paper presents the results of field experience from an experimental pavement construction on a low volume road using recycled concrete. The recycled concrete was prepared by replacing a half of coarse aggregate with recycled aggregate. Virgin natural sand was used as fine aggregate together a plasticizer and a fly ash (0.8% and 5% by wt. of cement, respectively). The load bearing capacity of the subbase made of recycled aggregate was acceptable. The length, thickness and width of the pavement were l00m, 20cm and 3m, respectively. From construction experience, it was found that workability and finishability of the recycled concrete mixture were relatively poor, but strengths were satisfactory. Flexural strength, compressive strength and elastic modulus at 28 days were 54Kg/$cm^2$, over 250Kg/$cm^2$, and 220,OOOKg/$cm^2$, respectively. The construction could be performed by hand without much difficulty. The surface was finished smoothly by wet fabric and only minor cracks were found on the surface.

  • PDF

Sound Absorbing Characteristics of Porous Concrete Using Recycled Aggregates (재생골재를 사용한 포러스 콘크리트의 흡음특성에 관한 연구)

  • 서대석;박승범;김정환;표구영;김범규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.485-488
    • /
    • 2003
  • The results of an experiment on the sound absorption of the porous concrete using recycled aggregates and its influence on the compressive strength are reported in this paper. The content of recycled aggregate of 0, 10, 30, 50 and 70%, and the design void ratio of 30 percent for a given size of aggregate were used. In the compressive strength, an aggregate of the size of 5~13mm is much higher strength than that of the 13~20mm, In sound absorption experiment, the sound absorption ratio was is subjected to decreased as the content of recycled aggregates was increased. As a result, Porous concrete using recycled aggregates and by-products sufficiently have the performance of sound absorption.

  • PDF

A Fundamental Study on the Quality of Recycled Aggregate Produced in Recycling Plant (재활용플랜트에서 생산되는 재생골재의 품질현황에 관한 기초적 연구)

  • 강희관;박선규;신호철;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.33-38
    • /
    • 1997
  • The reuse of waste concrete amy settle the problems of environmental pollution and critical shortage of good natural aggregate. But recycled aggregate particles consist of substantial amount of relatively soft cement paste component. These aggregates are more porous, and les resistant to mechanical actions than natural aggregate. And the source of supply for manufacturing recycled aggregate is generally composed of different types of original aggregate and strengths of original mortar. The properties of recycled aggregate exhibit a considerable variation due to the properties of original concrete. This paper is an experimental study on the fundamental properties of recycled aggregates sampled from processing plant in the suburbs of TaeJeon.

  • PDF

Predicting of compressive strength of recycled aggregate concrete by genetic programming

  • Abdollahzadeh, Gholamreza;Jahani, Ehsan;Kashir, Zahra
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2016
  • This paper, proposes 20 models for predicting compressive strength of recycled aggregate concrete (RAC) containing silica fume by using gene expression programming (GEP). To construct the models, experimental data of 228 specimens produced from 61 different mixtures were collected from the literature. 80% of data sets were used in the training phase and the remained 20% in testing phase. Input variables were arranged in a format of seven input parameters including age of the specimen, cement content, water content, natural aggregates content, recycled aggregates content, silica fume content and amount of superplasticizer. The training and testing showed the models have good conformity with experimental results for predicting the compressive strength of recycled aggregate concrete containing silica fume.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

Feasibility Study on Recycling of Concrete Waste from NPP Decommissioning Through Literature Review (기존 문헌 분석을 통한 원전 콘크리트 해체 폐기물 재활용 가능성에 대한 연구)

  • Cheon, Ju-Hyun;Lee, Seong-Cheol;Kim, Chang-Lak;Park, Hong-Gi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • In this paper, the feasibility of recycling concrete waste as a method to reduce final disposal amount of wastes generated through decommissioning of nuclear power plant has been analyzed based on experimental results of existing literature. When recycled concrete waste was used as recycled aggregate, it was investigated through literature that the concrete strength decreased by 30~40% depending on the mixing ratio. It was also investigated that concrete with recycled aggregate can be used as a structural material when the quality of recycled aggregate is well managed since no significant problem was found. When recycled cement produced from concrete waste was used, the strength of concrete or mortar decreased considerably as the recycled cement content increased. Therefore, it can be concluded that concrete or mortar with recycled cement can be used as a filling material for final disposal of large radioactive waste rather than for structural use. This paper is expected to be useful for reduction on disposal volume and decommissioning cost for nuclear power plants such as Kori 1.