• Title/Summary/Keyword: Recycled fibers

Search Result 168, Processing Time 0.022 seconds

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.168-182
    • /
    • 2001
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The 'stiff' fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of 'stiff' fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept.

  • PDF

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.63-69
    • /
    • 2002
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The "stiff" fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of "stiff" fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept. apply this concept.

Experimental Study on Mechanical Properties and Deformation Behavior of Concrete with Recycled Aggregates and Steel Fiber (순환골재 및 강섬유를 혼입한 콘크리트의 역학적 특성 및 변형 거동에 관한 실험적 연구)

  • Lee, Hyun-Ho;Lee, Tae-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.357-363
    • /
    • 2016
  • To solve the exhaustion problem of natural aggregate which were create the high value in construction and environmental industry, recycled aggregates have considerable benefits than other materials. However, even though many researches have been conducted with recycled aggregates, building structures with recycled aggregated are rarely constructed because it has lower quality than natural aggregates have. In this study, mechanical and strain properties of recycled aggregates concrete containing steel fibers have been reviewed in order to complement performance of recycled aggregates concrete. As results, recycled aggregates concrete showed lower compressive strength and elastic modulus than plain concrete. But, recycled aggregates concrete containing steel fibers showed equivalent performance with plain concrete. In review of drying shrinkage and creep coefficient, recycled aggregates concrete containing steel fibers showed similar behavior with plain concrete in the range of 0.5 Vol.% fiber content rate by internal restraint effect, moisture transport restraint effect and strength enhancement effect of steel fiber. Therefore, it is considered that mixing steel fibers with concrete is the effective method as a active application plan for recycled aggregates.

Influence of Chemical and Mechanical Treatments of the Screened Short Fibers from OCC on Paper Properties -Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatment (IV)- (골판지 고지섬유의 단섬유분의 물리화학적 처리에 관한 연구 -골판지 고지의 물리화학적 처리에 의한 강도향상 제4보-)

  • Lee, Jong-Hoon;Seo, Yung B.;Choi, Chan-Ho;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.7-14
    • /
    • 2001
  • Recycled fibers usually give slow drainage in the paper forming process, which limits the application of more refining to the recycled fibers for improving paper strength and formation. To use recycled fibers more effectively, especially OCC, developing very efficient handling technique of short fibers and fines is inevitable. We tried to make hard flocs of fractionated short fibers and fines, which were the main cause of slow drainage, by adding excessive amount of retention aid selectively on them. This technique was proved to increase drainage considerably, but to decrease strength properties, compared to the conventional technique of adding the same amount of polymers to the whole furnish in the lab test. The bonding capability of short fibers and fines in Korean OCC was very poor. Various chemical treatment on the short fibers and fines of the Korean OCC did not improve their bonding and optical properties. One of the reasons of no improvement in their properties was their high amount of ashes.

  • PDF

Application of In-situ CaCO3 Formation Method for Better Utilization of Recycled Fibers (1) - Enhancing Attachment of CaCO3 to Fibers by Polymer Pre-Treatment - (고지의 효과적인 활용을 위한 in-situ 탄산칼슘 부착방식의 연구 (1) - 탄산칼슘의 부착 효과 증대를 위한 고분자 전처리 -)

  • Seo, Yung Bum;Lee, Min Woo;Lee, Young Ho;Jung, Jae Kwon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • In-situ $CaCO_3$ formation on recycled wood pulp was studied to improve optical property and filler attachment to the fiber furnish in papermaking. We tried to attach calcium oxide (CaO) to the recycled fibers, old newspaper (ONP) in this case, by using selected polymers before in-situ $CaCO_3$ formation reaction on fibers, and then, $CO_2$ was injected to the furnish until all the CaO on fiber surfaces was consumed. It was found that the attachment of newly formed $CaCO_3$ to recycled fibers became stronger by attaching CaO to the fibers before in-situ $CaCO_3$ formation reaction. It was expected that the polymers used for the attachment of calcium source to the fiber furnishes helped to keep the newly formed $CaCO_3$ strongly attached to the fiber surface as well as to retain the impurities associated with calcium source and recycled fibers, if any. In-situ $CaCO_3$ formation gave higher brightness and much less ERIC value in ONP sheet than the case when the equivalent amount of GCC was added to the furnish.

Relationship between Equilibrium Moisture Contents and Dimensional Stability of Handsheet Depending on Fibers Hornification (섬유의 각질화에 따른 수초지의 평형함수율과 치수안정성의 관계)

  • Park, Chang-Soon;Lee, Jin-Ho;Kil, Jung-Ha;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.11-20
    • /
    • 2011
  • The conditions to which pulp fibers are exposed during paper production, converting, storage, use, and recycling can induce various changes in fiber morphology, surface characteristics, and suitability for paper production by recycled fibers. Most of those changes can be described by hornification. Paper has highly hygroscopic properties which affect dimensional change by relative humidity variation of surrounding condition. The purpose of this study was to investigate the dimensional stability, moisture contents and dip elongation of handsheets at different relative humidity conditions of recycled kraft pulp and BCTMP. By using recycled fibers, dimensional stability was increased because hygroscopic properties of fibers decreased with repeated recycling treatment. Dip elongation of recycled pulp was higher than that of virgin pulp because of its weak fiber-to-fiber bonding. By recycling pulp, the relative bonded area was decreased because fiber could not swell more than virgin pulp. Dimensional stability largely depended on the equilibrium moisture contents of paper, the fiber-to-fiber bonding strength, and the relative bonded area.

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

Characteristics of the Strength and Toughness of Polypropylene Fiber Reinforced Concrete using Recycled Aggregates. (재생골재를 이용한 폴리프로필렌 섬유보강콘크리트의 강도 및 휨인성 특성연구)

  • 류택은;박재성;조영래;오희보;구봉근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.655-660
    • /
    • 2000
  • This study was performed to verify the properties of concrete used recycled aggregate(0, 30%, 50%). Also, to improve the brittle fracture, energy absorption and apparent ductility of concrete, we added polypropylene fibers(0, 0.1, 0.2, 0.5, 1.0% by volume of concrete). As the experimental results, adding 30% recycled aggregates and 0.5% polypropylene fibers to concrete mixes enhances the properties of both compressive strength and toughness.

  • PDF

Analysis of Disintegration Characteristics of OCC (골판지 고지의 해섬 특성 해석)

  • Lee Hak Lae;Youn Hye Jung;Lee Sang Gil;Kang Tae Young;Heo Young Dae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.4 s.107
    • /
    • pp.1-8
    • /
    • 2004
  • Linerboards and corrugating mediums are being produced using recycled old corrugated containers (OCC) as major raw materials. The utilization rate of recycled fibers is ex­pected to increase further in the future to reduce raw material cost. Use of recycled fibers as raw materials for linerboard, however, causes many problems for papermakers. As the utilization rate of recycled fiber and number of recycling of fibers increases, quality and process problems including strength reduction and deterioration of machine runn­ability will increase. To overcome the problem of strength reduction associated with the use of recycled fibrous materials for producing quality linerboards, diverse extensive research efforts and new technological approaches have been taken. In this study, disintegration characteristics of aee was evaluated by determining the unslushed contents. The amount of unslushed content of KOCC was lower than AOCC. But contaminants content of KOCC was higher than AOCC. As the consistency in disintegration increased, the amount of unslushed fiber content decreased.

Corrosion effects on mechanical behavior of steel fiber reinforced concrete, including fibers from recycled tires

  • Ansari, Mokhtar;Safiey, Amir
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.367-375
    • /
    • 2020
  • Today, the use of special technologies in the admixture of concrete has made tremendous progress, but the problem that has always existed in the construction of concrete members is the brittleness and lack of loading bearing after cracking, which leads to reduced strength and energy absorption. One of the best ways to fix this is to reinforce the concrete with steel fibers. Steel fibers also control cracks due to dry shrinkage, reduce structural crack width, and improve impact resistance. In this study, recycled steel fibers from worn tires have been used in the manufacture of concrete samples, the secondary benefits of which are the reduction of environmental pollution. One of the disadvantages of steel fiber reinforced concrete is the corrosion of steel fibers and their deterioration in harsh environments such as coastal areas. Corrosion caused by chlorine ions in metal fibers causes deterioration and early decommissioning of structures in corrosive environments. In this study, the effect of the dosage of steel fibers (dosages of 15, 30, and 45 kg of fibers per cubic meter of concrete) and aspect ratio of fibers (aspect ratio of 25 and 50) on compressive and flexural strength of concrete samples are investigated. In the following, the effect of fiber corrosion on the results of the mechanical properties of concrete samples is examined. The results show that the increase in fiber causes a relative increase in compressive strength, and a significant increase in flexural strength, and corrosion of steel fibers without reducing workability reduces compressive strength and flexural strength by up to 6 to 11%, respectively.