• Title/Summary/Keyword: Recycled Pet Fiber

Search Result 29, Processing Time 0.022 seconds

Manufacture of Environmentally-friendly Flame-retardant Paper with Polyethylene Terephthalate (PET) Short Cut Fiber (PET 섬유를 사용한 친환경 난연지 제조방법에 대한 연구)

  • Kim, Ji-Seop;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • In this paper, the flame-retardant wall paper was successfully prepared with recycled polyethylene terephthalate (PET) short cut fiber with flame-retardant property and wood pulp using polyvinyl alcohol (PVA) as binder followed by treatment of non-halogen flame retardant. Physical properties such as formation index, tensile strength, elongation, and burst strength increased as defibrillation increased except tear strength. Bulk increased but formation index, tensile strength, elongation and burst strength decreased along with addition of PET short cut fiber. It was also found that tear strength rose significantly up to 30% of PET short cut fiber and then declined (fell) rapidly. As addition level of PVA increased tensile strength, elongation and burst strength increased, but tear strength decreased slightly. Addition of 20% of PET short cut fiber and 13% of PVA provided the flame-retardant wall paper with both improved flameproofing and physical properties.

Development of Synthetic Sizing Agent Using Recycling Polyethylene Terephthalate and its Sizing Efficiency (Part 2) - Sizing efficiency of modified PET - (재활용 PET를 활용한 합성 사이즈제 개발 및 종이의 내수성 부여에 관한 연구 (제2보) - 개질 PET의 내수특성 평가 -)

  • Park, Jae-Seok;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.95-101
    • /
    • 2010
  • For the development of higher-sizing performance of paper, a sizing agent using recycled PET was synthesised. Polyester resin was extracted from wasted PET by subcritical hydrolysis and finally modified to synthetic sizing agent by mixing water-disperse PET with triphenyl phosphite(TPP). The modified PET was considered as an internal sizing agent in different wet-end papermaking conditions. The optimum condition in sizing efficiency was obtained in initial pH of 6.5 in case of rosin+alum system, and 7.5 in case of rosin+alum+PET system, respectively, and in addition amount of PET 3%. The sizing efficiency was also closely related according to the fiber properties of wet-end slurry, such as virgin fibres from UKP and recycled fibres from KOCC. The application of modified PET was good in strength improvement of paper, specially in tensile strength.

Experimental analysis of damage in short-fiber-reinforced composite waste polyethylene terephthalate as a pile foundation material

  • Jang, Hongseok;Seo, Segwan;Cho, Daesung
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.147-157
    • /
    • 2022
  • This study assessed the compressive and tensile strengths and modulus of elasticity of waste polyethylene terephthalate (PET) using the ASTM standard tests. In addition, short carbon and glass fibers were mixed with waste PET to examine the improvements in ductility and strength during compression. The bonding was examined via field-emission scanning electron microscopy. The strength degradation of the waste PET tested under UV was 40-50%. However, it had a compressive strength of 32.37 MPa (equivalent to that of concrete), tensile strength of 31.83 MPa (approximately ten times that of concrete), and a unit weight of 12-13 kN/m3 (approximately half that of concrete). A finite element analysis showed that, compared with concrete, a waste PET pile foundation can support approximately 1.3 times greater loads. Mixing reinforcing fibers with waste PET further mitigated this, thereby extending ductility. Waste PET holds excellent potential for use in foundation piles, especially while mitigating brittleness using short reinforcing fibers and avoiding UV degradation.

Mechanical Properties of Green Strain-Hardening Cement-based Composites with Recycled Materials (순환재료를 사용한 그린 변형 경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Lee, Young-Oh;Nam, Sang-Hyun;Cha, Jun-Ho;Kim, Yun-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.399-400
    • /
    • 2010
  • This paper presents results of an experimental program for evaluating the mechanical properties of green strain-hardening cementitious composite (SHCC) using recycled material. Recycled poly ethylene terephthalate (PET) fiber, fly ash, and recycled sand from waste concrete are used as materials for green SHCC. Test results indicated that average tensile strength of five dumbbell-shaped specimen is 4.76MPa and average compressive and flexural strength of three specimens are 38MPa and 7.40MPa, respectively.

  • PDF

Mechanical Properties and Flexural Behavior of Recycled PET Fiber Reinforced Eco-Friendly Hwang-toh Concrete (재생 PET 섬유로 보강된 친환경 황토 콘크리트의 역학적 특성과 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Recently, the public interest in eco-friendly material and structure has been increasing and many Hwang-toh researches are being actively performed. Hwang-toh is one of the traditional environment friendly construction materials used as a construction and plastering material. Hwang-toh has many advantages as construction material due to its high heat storage capacity, auto-purification, antibiotic ability, and infrared ray emission characteristics. But, currently it has not been developed into construction material and used in modern construction due to its low strength and dry shrinkage cracking prone characteristics. According to the recent researches and study results, Hwang-toh can be used as a natural pozzolanic material like fly-ash or pozzolan. In this study, mechanical properties and structural flexure behavior experiments of slag, recycled PET fiber, and Hwang-toh added concrete are carried out. The test results showed that drying shrinkage of concrete mixed with Hwang-toh has lower compressive strength and elastic modulus than those of control cement concrete specimen, but it has the similar flexural behavior in reinforced concrete beams.

The sound absorption properties of the recycled PET nonwovens

  • Lee Yun-Ung;Kim Dong-Uk;Baek Mun-Su;Ju Chang-Hwan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.244-248
    • /
    • 1998
  • The sound absorption materials are generally classified by three types, such as porous, resonator, panel. All of these types are based on theory of energy transform from sound energy to thermal energy. At first, the sound energy transform from the porous type uses to friction and viscose resistance. Secondly, resonator type uses to resonance frequency, absorption coefficient reach the highest.(omitted)

  • PDF

Physical and mechanical properties of cement mortar with LLDPE powder and PET fiber wastes

  • Benimam, Samir;Bentchikou, Mohamed;Debieb, Farid;Kenai, Said;Guendouz, Mohamed
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.461-467
    • /
    • 2021
  • Polyethylene-terephthalate (PET) from bottle waste and linear low-density polyethylene (LLDPE) from barrels and tanks waste are widely available and need to be recycled. Recycling them in concrete and mortar is an alternative solution for their disposal. In this study various quantities of sand (5%, 10%, 15% and 20%) were substituted by powder from LLDPE waste. In addition, PET waste fibers (corrugated, straight) were added to the mortar with different percentages (0.5%, 1%, 1.5% and 2%) of cement mass. This paper evaluate the mechanical and physical properties of the composites in fresh (workability, air content and density) and hardened state (compressive and flexural strength, water absorption and total shrinkage). From the experimental results, it can be concluded that the strengthening in tensile of the mortar with plastic waste corrugated fibers is improved. Other important results are that the water absorption and the density rate are less than that of the ordinary mortar.

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Preparation and Characterization Study of PET Nanofiber-reinforced PEI Membrane, Investigation of the Application of Organic Solvent Nanofiltration Membrane (PET 나노섬유 강화 PEI 막의 제조 및 특성화 연구, 그에 따른 유기용매 나노여과막 가능성 검증)

  • Sung-Bae Hong;Kwangseop Im;Dong-Jun Kwon;Sang Yong Nam
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • In this study, waste polyethylene terephthalate (PET) was recycled to produce a support and then polyetherimide (PEI) was used for environmentally friendly organic solvent nanofiltration. The prepared composite membrane was first prepared by electrospinning a PET support, then casted on the support using PEI having excellent solvent resistance, and organic solvent nanoparticles using a Non-solvent Induced Phase Separation (NIPS) method. A filtration membrane was prepared. First, the fiber diameter and tensile strength of the PET scaffold prepared prior to membrane fabrication were identified through morphology analysis, and the optimal scaffold for the organic solvent nanofiltration membrane was identified. Afterward, the PET/PEI composite membrane prepared was checked for the DEA removal rate of Congo red having a molecular weight of 697 g/mol in ethanol to understand the performance as an organic solvent nanofiltration membrane according to the concentration of PEI. Finally, the removal rate of Congo red was 90% or more.