• Title/Summary/Keyword: Recycled Aggregates

Search Result 491, Processing Time 0.027 seconds

Effect of Crushing Gap of Jaw Crusher on the Quality of Fine Aggregates Made with High-Strength Waste Concrete (조크러셔 파쇄간격이 고강도 폐콘크리트로 제조된 순환 잔골재의 품질에 미치는 영향)

  • Lim, Gun-Su;Lee, Jun-Seok;Lee, Dong-Yun;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.60-61
    • /
    • 2020
  • In this study, the recycled fine aggregates produced from the waste concrete by using Jaw crusher depending on crushing gap of Jaw crusher were studied to offer a solution for recycled fine aggregate for concrete. The results of the experiment showed that the factors that influence grading and water absorption ratio, density and grain shape were significantly characterized by the generation of the particulate matter and the crushing shape of the aggregate.

  • PDF

Proposals of Integration of Korea Industrial Standard for Aggregates for Efficient Quality Control of Concrete Aggregate (콘크리트용 골재 품질 관리 효율화를 위한 골재 관련 KS 표준 통합 방안)

  • Lee, Jun-Seok;Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • The objective of this paper is to provide integrated Korea industrial standards(KS) for concrete aggregates, which has been separately provided with ten kinds of KS, in order to improve the way of quality management of concrete aggregate and to prevent distribution of unsuitable aggregates. For the sequences of the paper, typical foreign standards related to concrete aggregates including ASTM for US, EN for EU, JIS for Japan are reviewed and compared to provide necessities and feasibilities of the paper. Based on the analysis above results, existing KS for concrete aggregates, which have been separately provided with ten kinds being lack of correlation between each KS is integrated to KS F 2526 "Aggregates for concrete" in this paper. By doing this, in terms of terminology, the expression of the aggregate, which has been currently classified into specified terminologies of aggregates depending on sources, manufacturing methods of each aggregates, is able to be integrated to single expression of the aggregate for concrete. It is believed that integrated KS presented herein provides more desirable way in terms of its better accessibility, easier revision and closer connection between each aggregate kinds.

Analysis of data on mechanical properties and durability of recycled aggregate concrete to develope estimation program of recycled aggregate concrete strength (재생콘크리트 강도 예측 프로그램 개발을 위한 재생콘크리트의 역학적 특성과 내구성에 관한 자료 분석)

  • Choi Hee-Bok;Kang Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.15-19
    • /
    • 2004
  • The production of waste concrete is increased continuously by urban renewal, reconstruction, remodeling, and so on. So the positive use of recycled aggregate concrete is needed. Research for recycled aggregate concrete that use recycled aggregate from the mid-80s to solve environmental problem of aggregate insufficiency and waste concrete is consisting vigorously. However, specifications and mix design about waste concrete's use are evading use of recycled aggregate concrete yet in spot being not taken a triangular position. Therefore. it analyze existing research data for recycled aggregate concrete collection to develop strength estimate program in this research. Recycled aggregate concrete's strength estimate program if specifications and mix design about recycled aggregate concrete are taken a triangular position to foundation recycled aggregate concrete's practical use to increase judge.

  • PDF

Effect of the Replacement of Recycled Coarse Aggregates Under 13mm on Engineering Properties of the Concrete (13mm 이하 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Kang, Byeong-Heo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • The objective of this paper is to investigate experimentally the effect of the substitution of recycled aggregates under 13mm on the properties of the concrete using coarse aggregate with size of 13~25mm. Recycled aggregate under 13mm were substituted to the concrete ranged from 10% to 100%. To compare the properties with the case of recycled aggregate, crushed stone with smaller than 13mm was also substituted to the concrete by 20% and 40%. Test results showed that increase of recycled aggregate under 13mm resulted in the increase of slump and compressive strength compared with plain mixture, which was made with only aggregate with 13~25mm size. This is due to the dense gradation of aggregate in association with addition of relatively small particle. It is thought that the use of recycled aggregate under 13mm along with 30% contributes to the quality improvement of the concrete made with only 13~25mm aggregate.

Properties of Concrete Using Waste Pottery and Porcelain as Aggregates (폐도자기를 골재로 이용한 콘크리트의 특성)

  • Kang, Sung-Gu;Lee, Wan-Jo;Hwang, In-Dong;Park, Sung;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.99-103
    • /
    • 2005
  • Nowadays, large amount of waste pottery and porcelain annually are produced. It is needed that they are used as recycled materials in order to prevent environmental pollution and gain economic profits. Therefore, the purpose of this study is to present the method of utilizing the recycled aggregates that are obtained from waste pottery and porcelain as the concrete aggregate. The qualities of the recycled aggregate were compared with those of the crushed aggregate through measuring their physical properties. The test results showed that the replacement of crushed aggregate by recycled aggregate at the levels $10\%,\;20\%$, and $30\%$ had little effect on the compressive strength of the concretes, but higher levels of replacement reduced the compressive strength. Increment of the replacement of recycled aggregate caused increase in absorption ratio. As a conclusion, norman strength recycled aggregate concretes can be produced using less than $30\%$ of recycled aggregate.

A Study on the Physical Properties of Interlocking Block with the Contents of the Recycled Aggregate (순환골재 혼합비율에 따른 인터로킹 블록의 물리적 특성에 관한 연구)

  • Jeon, Chan-Soo;Song, Tae-Hyeob;Yoon, Sang-Hyuck
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.71-78
    • /
    • 2012
  • Recycled aggregates are made from construction wastes, and they have many national and social benefits by saving energy, developing substitute resources, and protecting environment. However, low-quality recycled aggregate with low density and high absorption rate cannot be used for structural concrete aggregate but is used mainly for low added value. Therefore, this study aims to identify the characteristics of the materials of recycled aggregates made after crashing and pulverizing waste concrete. For this, their major physical characteristics of cement content, absolute dry density, absorption rate, etc. were reviewed to make a mix design (draft) for the production of the secondary product and performance evaluation was done on the bending strength, absorption rate, bending strength after freezing and thawing, compressive strength, air-dried gravity, etc. of the test products produced by applying the mix design to compare the results with the quality standards of GR mark. The results of the tests showed that the substitution rate of recycled aggregate increased to 50~90 %, which is of superior quality than the performance standards of GR F 4007. Therefore, it is thought that they can be used for various construction works with certain physical characteristics applicable to the production of secondary concrete products using recycled aggregates.

  • PDF

A Study on Improvement for Freeze and Thaw Durability of Concrete Using Recycled Coarse Aggregate (재생굵은골재 사용 콘크리트의 내동해성 향상을 위한 연구)

  • 김용직;문한영;문대중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.643-648
    • /
    • 2002
  • A research for recycling the demolished-concrete as concrete aggregate has been concerned in all over the world. There, however, are some problems that qualities of recycled aggregates are not only largely different, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with that of natural aggregate concrete. In this study, the resistance of freezing and thawing of concrete using source-concrete recycled aggregate(SRN) and demolished-concrete recycled aggregate(DRA) was investigated. Futhermore a research for improvement of freeze and thaw durability of recycled aggregate concrete was performed. Relative dynamic modulus of elasticity of SRN and DRA recycled aggregate concrete was dropped 60% before 150 of freezing and thawing cycle, and was much lower than that of control concrete. Relative dynamic modulus of elasticity of recycled aggregate concrete was increased to decrease water-cement ratio, but the freeze and thaw durability of recycled aggregate concrete was not enough improved. Futhermore, when metakaolin and silica fume were repalced, the freeze and thaw durability of recycled aggregate concrete containg metakaolin was more improved than that of silica fume.

  • PDF

A Study on pH Reduction of Recycled Aggregates Using Coffee Waste and Its Crushability (커피박을 이용한 순환골재의 pH 저감 및 파쇄성 연구)

  • Lee, Young-Jae;Lee, Dong-Yun;Chen, KeQiang;Kim, Moon-Gi;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.21-29
    • /
    • 2016
  • In this study, recycled aggregates crushed from waste concrete were sorted into three groups, 10-13 mm, 13-20 mm, and 20-25 mm. They were treated in different ways and then their crushability was evaluated for each treatment. Coffee waste was used for reducing their pH level. The pH of recycled aggregate was almost 11, regardless of aggregate sizes. The pH of coffee waste was nearly 5 and 10, 30, or 50 g of coffee waste was mixed with 1000 ml of distilled water and recycled aggregates. The lowest pH was about 6.2 when 50 g of coffee waste was mixed. Aggregates were treated with microwave or soaked for 1 day in vinegar (pH = 2) for neutralization reaction. Microwave treated and neutralized aggregates showed 3.3% and 6.2% higher crushing values compared to non-treated one, respectively. Neutralized treatment was more effective for crushing. In crushing tests, a sample height of 120 mm was tried, which gave 6.3% higher crushing value. A four stepped loading with each 100 kN gave 7.1% higher crushing value, compared to standard 100 mm height and 400 kN continuous loading.

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.