• Title/Summary/Keyword: Recycle energy

Search Result 201, Processing Time 0.025 seconds

A study on technical application of recycle energy storage system for electric rail car (전동차 회생에너지 활용을 위한 저장시스템 적용기술 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Se-Chan;Lee, Chang-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.307-309
    • /
    • 2006
  • There are operated the six thousand train in the interior of a country. 95% of them are possible usage of resuscitation. Especially, Among them VVVF-Inverter vehicle has a merit of the highest recycle rate. but we don't use a apt recycled energy. Although the existing recycle energy used inverter method supply with electric power, it is decided in accordance with the state of sources. So efficiency of recycled electric power is of poor quality and catenary-voltage-fluctuation be generate because of recycled electric power. and it is able to affect system of safety train service. We'll research the method of supply according to wire condition after storing recycle energy made during train's stopping relation to Advanced EMU Research. Those methods are divided SMES, Fly-Wheel and Supercapacitor, and Considering the both economical efficiency and system application, we'll develop recycle energy storage system suitable our country condition.

  • PDF

Development of recycle energy storage system on electric rail car (전동차 회생 에너지 저장 시스템 개발에 관한 연구)

  • Kim Gil-dong;Kim Jong-Dae;Lee Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.660-664
    • /
    • 2005
  • There are operated the six thousand train in the interior of a country, $95\%$ of them are possible usage of resuscitation, Especially, Among them VVVF-Inverter vehicle has a merit of the highest recycle rate, but we don't use a apt recycled energy. Although the existing recycle energy used inverter method supply with electric power, it is decided in accordance with the state of sources. So efficiency of recycled electric power is of poor quality and catenary-voltage-fluctuation be generate because of recycled electric power. and it is able to affect system of safety train service. We'll research the method of supply according to wire condition after storing recycle energy made during train's stopping relation to Advanced EMU Research. Those methods are divided SMES, Fly-Wheel and Supercapacitor. and Considering the both economical efficiency and system application, we'll develop recycle energy storage system suitable our country condition.

  • PDF

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

A Study on the Development of $CO_2$ Recycle Oxy-Fuel Combustion Heating System ($CO_2$ 재순환형 산소연소 가열시스템 개발에 관한 연구)

  • Jeong Yu-Seok;Lee Eun-Kyung;Go Chang-Bok;Jang Byung-Lok;Han Hyung-Kee;Noh Dong-Soon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2006.05a
    • /
    • pp.412-419
    • /
    • 2006
  • An Experimental study was conducted on $CO_{2}$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_{2}$ and water vapor($H_{2}O$ and water vapor($H_{2}O$) and resulting in higher $CO_{2}$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_{2}$ but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_{2}$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_{2}$ concentration in the flue gas was about 80% without $CO_{2}$recycle. The furnace temperature and pressure and pressure were decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

Internal Recycle Distribution and Heat Transfer Effect for Optimal Design of Dividing Wall Distillation Columns (분리벽형 증류탑의 최적 설계를 위한 내부 순환량 분포와 전열 특성 연구)

  • 정성오;이기홍;이문용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.236-241
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved column design method is suggested to utilize the heat transfer through the wall. The suggested method is compared with the existing method via simulation study in which the proposed design shows improved energy saving result.

Process Modeling and Fuel Utilization Analyses of a 7 kW MCFC System using ASPEN PLUS (ASPEN PLUS를 이용한 7 kW 용융탄산염형 연료전지 시스템의 공정모사 및 연료 이용률 분석)

  • 강병삼;안교상;고준호;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.85-94
    • /
    • 1999
  • 전력연구원에서 수행 중인 7 kW 용융탄산염형 연료전지 시스템의 운전 조건과 일치하는 모델을 in-Line FORTRAN 블록을 이용하여 상용 소프트웨어인 ASPEN PLUS로 전산 모사한 결과와 가스 크로마토그래피를 이용하여 분석한 실험적인 값을 비교 분석한 결과 실험치와 거의 일치함을 보였다. 향후 대형 시스템에서 사용하게될 가스 recycle을 위해서 연료극, 공기극의 가스를 recycle할 때와 연료극 가스를 catalytic burner를 이용하여 recycle하였을 때 연료의 전체적인 시스템의 효율 변화를 살펴보았다. 이러한 결과는 용융탄산염 연료전지 대형 시스템의 설계에 중요한 자료가 될 것이다.

  • PDF

Improvement of Hydrocarbon Recovery by Two-Stage Cell-Recycle Extraction in the Cultivation of Botryococcus braunii

  • An, Jin-Young;Sim, Sang-Jun;Kim, Byung-Woo;Lee, Jin-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.932-937
    • /
    • 2004
  • In situ extraction by organic solvent was studied in order to improve the recovery yield of hydrocarbon from the culture of Botryococcus braunii, a green colonial microalga. When the solvent mixture of octanol as an extractive solvent and n-octane as a biocompatible solvent was added to a two-phase column, the algal growth was seriously inhibited, even at a low concentration of polar octanol. Therefore, a two-stage cell-recycle extraction process was proposed to improve the contact area between the organic phase and the aqueous phase. The hydrocarbon recovery with in situ cell-recycle extraction showed a three-fold increase (57% of cell) in yield over that with two-phase extraction. In addition, over 60% of the hydrocarbon could be recovered without serious cell damage by downstream separation when this process was applied to the culture broth after batch fermentation.

Dialysis in double-pass cross-flow rectangular membrane modules with external recycle for improved performance

  • Yeh, Ho-Ming
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.75-89
    • /
    • 2011
  • The predicting equations for mass transfer rate in cross-flow rectangular dialyzers with double flow and recycle, have been derived by mass balances. The recycling operation has two conflicting effects. One is the desirable effect of the increase in fluid velocity, resulting in an increased mass transfer coefficient. The other is the undesirable effect of the reduction in concentration difference due to remixing, resulting in decreased mass-transfer driving force. In contrast a single-pass device without recycling, considerable improvement in mass transfer is achieved if the cross-flow rectangular dialyzer of same size is operated with double pass and external recycling. It is concluded that recycle can enhance mass transfer, especially for larger reflux ratio.