• Title/Summary/Keyword: Recursive Technique

Search Result 187, Processing Time 0.029 seconds

Development of suspended solid concentration measurement technique based on multi-spectral satellite imagery in Nakdong River using machine learning model (기계학습모형을 이용한 다분광 위성 영상 기반 낙동강 부유 물질 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won;Beak, Donghae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.121-133
    • /
    • 2021
  • Suspended Solids (SS) generated in rivers are mainly introduced from non-point pollutants or appear naturally in the water body, and are an important water quality factor that may cause long-term water pollution by being deposited. However, the conventional method of measuring the concentration of suspended solids is labor-intensive, and it is difficult to obtain a vast amount of data via point measurement. Therefore, in this study, a model for measuring the concentration of suspended solids based on remote sensing in the Nakdong River was developed using Sentinel-2 data that provides high-resolution multi-spectral satellite images. The proposed model considers the spectral bands and band ratios of various wavelength bands using a machine learning model, Support Vector Regression (SVR), to overcome the limitation of the existing remote sensing-based regression equations. The optimal combination of variables was derived using the Recursive Feature Elimination (RFE) and weight coefficients for each variable of SVR. The results show that the 705nm band belonging to the red-edge wavelength band was estimated as the most important spectral band, and the proposed SVR model produced the most accurate measurement compared with the previous regression equations. By using the RFE, the SVR model developed in this study reduces the variable dependence compared to the existing regression equations based on the single spectral band or band ratio and provides more accurate prediction of spatial distribution of suspended solids concentration.

A Robust Digital Pre-Distortion Technique in Saturation Region for Non-linear Power Amplifier (비선형 전력 증폭기의 포화영역에서 강인한 디지털 전치왜곡 기법)

  • Hong, Soon-Il;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.681-684
    • /
    • 2015
  • Power amplifier is an essential component for transmitting signals to a remote receiver in wireless communication systems. Power amplifier is a non-linear device in general, and the nonlinear distortion becomes severer as the output power increases. The nonlinearity results in spectral regrowth, which leads to adjacent channel interference, and decreases the transmit signal quality. To linearize power amplifiers, many techniques have been developed so far. Among the techniques, digital pre-distortion is known as the most cost and performance effective technique. However, the linearization performance falls down abruptly when the power amplifier operates in its saturation region. This is because of the severe nonlinearity. To relieve this problem, this paper proposes a new adaptive predistortion technique. The proposed technique controls the adaptive algorithm based on the power amplifier input level. Specifically, for small signals, the adaptive predistortion algorithm works normally. On the contrary, for large signals, the adaptive algorithm stops until small signals occur again. By doing this, wrong coefficient update by severe nonlinearity can be avoided. Computer simulation results show that the proposed method can improve the linearization performance compared with the conventional digital predistortion algorithms.

  • PDF

Improvement of the Linear Predictive Coding with Windowed Autocorrelation (윈도우가 적용된 자기상관에 의한 선형예측부호의 개선)

  • Lee, Chang-Young;Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.186-192
    • /
    • 2011
  • In this paper, we propose a new procedure for improvement of the linear predictive coding. To reduce the error power incurred by the coding, we interchanged the order of the two procedures of windowing on the signal and linear prediction. This scheme corresponds to LPC extraction with windowed autocorrelation. The proposed method requires more calculational time because it necessitates matrix inversion on more parameters than the conventional technique where an efficient Levinson-Durbin recursive procedure is applicable with smaller parameters. Experimental test over various speech phonemes showed, however, that our procedure yields about 5 % less power distortion compared to the conventional technique. Consequently, the proposed method in this paper is thought to be preferable to the conventional technique as far as the fidelity is concerned. In a separate study of speaker-dependent speech recognition test for 50 isolated words pronounced by 40 people, our approach yielded better performance too.

Low-noise VLSI Implementation of Pipelined IIR Filters (파이프라인된 IIR 필터의 저잡음 VLSI구현)

  • 태기철;최정필;신승철;정진균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.788-795
    • /
    • 2000
  • Scattered look-ahead pipelining method can be efficiently used for high sample rate or low-power applications of digital recursive filters. Although the pipelined filters are guaranteed to be stable by this method, these filters suffer from large round off noise when the poles are crowed within some critical regions. To avoid this problem, a low-noise implementation technique was proposed using constrained Remez exchange algorithm. By the constrained filter design approach, the desired filter spectrum is satisfied while some of the pole angles are constrained to avoid pole crowding within critical regions. In the proposed approach, to obtain improved spectrum characteristics or better round off noise properties, the radius of the angle-constrained pole is optimized depending on the direction of the pole movement.

  • PDF

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Joint Symbol Detection and Channel Estimation Methods for an OFDM System in Fading Channels (페이딩 채널환경에서 OFDM 시스템에 대한 심볼 검출 및 채널 추정 기법)

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • In this paper, we present the joint symbol detection and channel estimation for an orthogonal frequency division multiplexing (OFDM) system in fading channels. The proposed methods are based on decision-directed channel estimation (DDCE) method and their symbol detection is achieved by using Viterbi algorithm. This Viterbi decision-directed channel estimation (VDDCE) method tracks time-varying channels and detects a maximum likelihood symbol sequence. Recursive Viterbi decision-directed channel estimation (RVDDCE) method based on VDDCE method is proposed to shorten the detecting depth. In this method, channel estimate and Viterbi processing are recursively performed every interval of training symbol. Also, average chann'el estimation (ACE) technique to reduce the effect of additive white Gaussian noise (AWGN) is applied VDDCE method and RVDDCE method. These proposed methods arc demonstrated by computer simulation.

  • PDF

Research for the 5 axis machining simulation system with Octree Algorithm (옥트리에 기반한 5 축 가공 시뮬레이션을 위한 연구)

  • Kim Y.H.;Ko S.L.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.956-959
    • /
    • 2005
  • The overall goal of this thesis is to develop a new algorithm based on the octree model for geometric and mechanistic milling operation at the same time. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. To achieve a high level of accuracy, fast computation time and less memory consumption, the advanced octree model is suggested. By adopting the supersampling technique of computer graphics, the accuracy can be significantly improved at approximately equal computation time. The proposed algorithm can verify the NC machining process and estimate the material removal volume at the same time.

  • PDF

Development of an Arc Segmentation Technique Based on Line Segment Expansion from Simple Drawing (단순한 도면으로부터 선분 확장을 이용한 아크 분할 기법 개발)

  • 정성태
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.579-591
    • /
    • 2004
  • This paper presents a new arc segmentation method which extracts curves from simple drawing consisted of straight lines and curves and segments them into circular arcs. First, it finds center points and finds line segments and curve segments by tracing connected center points. Next, it expands the segment by searching neighbor segment at the two endpoints. Next, it removes straight lines and segments the extracted curves into circular arcs by using the recursive subdivision method. The proposed method has been compared with previous vectorization software and vector based arc segmentation method. Experimental results show that the proposed method produces more correct results for the curves which contain intersection with other lines or curves.

  • PDF

Relative azimuth estimation algorithm using rotational displacement

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2014
  • Recently, indoor localization systems based on wireless sensor networks have received a great deal of attention because they help achieve high accuracy in position determination by using various algorithms. In order to minimize the error in the estimated azimuth that can occur owing to sensor drift and recursive calculation in these algorithms, we propose a novel relative azimuth estimation algorithm. The advantages of the proposed technique in an indoor environment are that an improved weight average filter is used to effectively reduce impulse noise from the raw data acquired from nodes with inherent errors and a rotational displacement algorithm is applied to obtain a precise relative azimuth without using additional sensors, which can be affected by electromagnetic noise. Results from simulations show that the proposed filter reduces the impulse noise, and the acquired estimation error does not accumulate with time by using proposed algorithm.

Detection of structural damage via free vibration responses by extended Kalman filter with Tikhonov regularization scheme

  • Zhang, Chun;Huang, Jie-Zhong;Song, Gu-Quan;Dai, Lin;Li, Huo-Kun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.115-127
    • /
    • 2016
  • It is a challenging problem of assessing the location and extent of structural damages with vibration measurements. In this paper, an improved Extended Kalman filter (EKF) with Tikhonov regularization is proposed to identify structural damages. The state vector of EKF consists of the initial values of modal coordinates and damage parameters of structural elements, therefore the recursive formulas of EKF are simplified and modal truncation technique can be used to reduce the dimension of the state vector. Then Tikhonov regularization is introduced into EKF to restrain the effect of the measurement noise for improving the solution of ill-posed inverse problems. Numerical simulations of a seven-story shear-beam structure and a simply-supported beam show that the proposed method has good robustness and can identify the single or multiple damages accurately with the unknown initial structural state.