• Title/Summary/Keyword: Recursive Index

Search Result 44, Processing Time 0.026 seconds

Has Container Shipping Industry been Fixing Prices in Collusion?: A Korean Market Case

  • Jaewoong Yoon;Yunseok Hur
    • Journal of Korea Trade
    • /
    • v.27 no.1
    • /
    • pp.79-100
    • /
    • 2023
  • Purpose - The purpose of this study is to analyze the market power of the Korea Container Shipping Market (Intra Asia, Korea-Europe, and Korea-U.S.) to verify the existence of collusion empirically, and to answer whether the joint actions of liner market participants in Korea have formed market dominance for each route. Precisely, it will be verified through the Lerner index as to whether the regional market of Asia is a monopoly, oligopoly, or perfect competition. Design/methodology - This study used a Lerner index adjusted with elasticity presented in the New Imperial Organization (NEIO) studies. NEIO refers to a series of empirical studies that estimate parameters to judge market power from industrial data. This study uses B-L empirical models by Bresnahan (1982) and Lau (1982). In addition, NEIO research data statistically contain self-regression and stability problems as price and time series data. A dynamic model following Steen and Salvanes' Error Correction Model was used to solve this problem. Findings - The empirical results are as follows. First, λ, representing market power, is nearly zero in all three markets. Second, the Korean shipping market shows low demand elasticity on average. Nevertheless, the markup is low, a characteristic that is difficult to see in other industries. Third, the Korean shipping market generally remains close to perfect competition from 2014 to 2022, but extreme market power appears in a specific period, such as COVID-19. Fourth, there was no market power in the Intra Asia market from 2008 to 2014. Originality/value - Doubts about perfect competition in the liner market continued, but there were few empirical cases. This paper confirmed that the Korea liner market is a perfect competition market. This paper is the first to implement dynamics using ECM and recursive regression to demonstrate market power in the Korean liner market by dividing the shipping market into Deep Sea and Intra Asia separately. It is also the first to prove the most controversial problems in the current shipping industry numerically and academically.

Panel data analysis with regression trees (회귀나무 모형을 이용한 패널데이터 분석)

  • Chang, Youngjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1253-1262
    • /
    • 2014
  • Regression tree is a tree-structured solution in which a simple regression model is fitted to the data in each node made by recursive partitioning of predictor space. There have been many efforts to apply tree algorithms to various regression problems like logistic regression and quantile regression. Recently, algorithms have been expanded to the panel data analysis such as RE-EM algorithm by Sela and Simonoff (2012), and extension of GUIDE by Loh and Zheng (2013). The algorithms are briefly introduced and prediction accuracy of three methods are compared in this paper. In general, RE-EM shows good prediction accuracy with least MSE's in the simulation study. A RE-EM tree fitted to business survey index (BSI) panel data shows that sales BSI is the main factor which affects business entrepreneurs' economic sentiment. The economic sentiment BSI of non-manufacturing industries is higher than that of manufacturing ones among the relatively high sales group.

Lane Detection Based on a Cumulative Distribution function of Edge Direction (에지 방향의 누적분포함수에 기반한 차선인식)

  • Yi, Un-Kun;Baek, Kwang-Ryul;Lee, Joon-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2814-2818
    • /
    • 2000
  • This paper describes an image processing algorithm capable of recognizing the road lane using a CDF (Cumulative Distribution Function). which is designed for the model function of the road lane. The CDF has distinctive peak points at the vicinity of the lane direction because of the directional and positional continuities of the lane. We construct a scatter diagram by collecting the edge pixels with the direction corresponding to the peak point of the CDF and carry out the principal axis-based line fitting for the scatter diagram to obtain the lane information. As noises play the role of making a lot of similar features to the lane appear and disappear in the image we introduce a recursive estimator of the function to reduce the noise effect and a scene understanding index (SUI) formulated by statistical parameters of the CDF to prevent a false alarm or miss detection. The proposed algorithm has been implemented in a real time on the video data obtained from a test vehicle driven in a typical highway.

  • PDF

Road-Lane Detection Based on a Cumulative Distribution Function of Edge Direction

  • Yi, Un-Kun;Lee, Joon-Woong;Baek, Kwang-Ryul
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 2001
  • This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF(cumulative distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent false alarms or miss detection a scene understanding index (DUI) was formulated by the statistical parameters of the CDF. The proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Floop: An efficient video coding flow for unmanned aerial vehicles

  • Yu Su;Qianqian Cheng;Shuijie Wang;Jian Zhou;Yuhe Qiu
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.615-626
    • /
    • 2023
  • Under limited transmission conditions, many factors affect the efficiency of video transmission. During the flight of an unmanned aerial vehicle (UAV), frequent network switching often occurs, and the channel transmission condition changes rapidly, resulting in low-video transmission efficiency. This paper presents an efficient video coding flow for UAVs working in the 5G nonstandalone network and proposes two bit controllers, including time and spatial bit controllers, in the flow. When the environment fluctuates significantly, the time bit controller adjusts the depth of the recursive codec to reduce the error propagation caused by excessive network inference. The spatial bit controller combines the spatial bit mask with the channel quality multiplier to adjust the bit allocation in space to allocate resources better and improve the efficiency of information carrying. In the spatial bit controller, a flexible mini graph is proposed to compute the channel quality multiplier. In this study, two bit controllers with end-to-end codec were combined, thereby constructing an efficient video coding flow. Many experiments have been performed in various environments. Concerning the multi-scale structural similarity index and peak signal-to-noise ratio, the performance of the coding flow is close to that of H.265 in the low bits per pixel area. With an increase in bits per pixel, the saturation bottleneck of the coding flow is at the same level as that of H.264.

Prognostic Factors and Scoring Systems for Non-Small Cell Lung Cancer Patients Harboring Brain Metastases Treated with Gamma Knife Radiosurgery

  • Eom, Jung-Seop;Cho, Eun-Jung;Baek, Dong-Hoon;Lee, Kyung-Nam;Shin, Kyung-Hwa;Kim, Mi-Hyun;Lee, Kwang-Ha;Kim, Ki-Uk;Park, Hye-Kyung;Kim, Yun-Sung;Park, Soon-Kew;Cha, Seong-Heon;Lee, Min-Ki
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.1
    • /
    • pp.15-23
    • /
    • 2012
  • Background: The survival of non-small cell lung cancer (NSCLC) patients with brain metastases is reported to be 3~6 months even with aggressive treatment. Some patients have very short survival after aggressive treatment and reliable prognostic scoring systems for patients with cancer have a strong correlation with outcome, often supporting decision making and treatment recommendations. Methods: A total of one hundred twenty two NSCLC patients with brain metastases who received gamma knife radiosurgery (GKRS) were analyzed. Survival analysis was calculated in all patients for thirteen available prognostic factors and four prognostic scoring systems: score index for radiosurgery (SIR), recursive partitioning analysis (RPA), graded prognostic assessment (GPA), and basic score for brain metastases (BSBM). Results: Age, Karnofsky performance status, largest brain lesion volume, systemic chemotherapy, primary tumor control, and medication of epidermal growth factor receptor tyrosine kinase inhibitor were statistically independent prognostic factors for survival. A multivariate model of SIR and RPA identified significant differences between each group of scores. We found that three-tiered indices such as SIR and RPA are more useful than four-tiered scoring systems (GPA and BSBM). Conclusion: There is little value of RPA class III (most unfavorable group) for the same results of 6-month and 1-year survival rate. Thus, SIR is the most useful index to sort out patients with poorer prognosis. Further prospective trials should be performed to develop a new molecular- and gene-based prognostic index model.

An Efficient Path Expression Join Algorithm Using XML Structure Context (XML 구조 문맥을 사용한 효율적인 경로 표현식 조인 알고리즘)

  • Kim, Hak-Soo;Shin, Young-Jae;Hwang, Jin-Ho;Lee, Seung-Mi;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.605-614
    • /
    • 2007
  • As a standard query language to search XML data, XQuery and XPath were proposed by W3C. By widely using XQuery and XPath languages, recent researches focus on the development of query processing algorithm and data structure for efficiently processing XML query with the enormous XML database system. Recently, when processing XML path expressions, the concept of the structural join which may determine the structural relationship between XML elements, e.g., ancestor-descendant or parent-child, has been one of the dominant XPath processing mechanisms. However, structural joins which frequently occur in XPath query processing require high cost. In this paper, we propose a new structural join algorithm, called SISJ, based on our structured index, called SI, in order to process XPath queries efficiently. Experimental results show that our algorithm performs marginally better than previous ones. However, in the case of high recursive documents, it performed more than 30% by the pruning feature of the proposed method.

Survival Analysis of Patients with Brain Metastsis by Weighting According to the Primary Tumor Oncotype (전이성 뇌종양 환자에서 원발 종양 가중치에 따른 생존율 분석)

  • Gwak, Hee-Keun;Kim, Woo-Chul;Kim, Hun-Jung;Park, Jung-Hoon;Song, Chang-Hoon
    • Radiation Oncology Journal
    • /
    • v.27 no.3
    • /
    • pp.140-144
    • /
    • 2009
  • Purpose: This study was performed to retrospectively analyze patient survival by weighting according to the primary tumor oncotype in 160 patients with brain metastasis and who underwent whole brain radiotherapy. Materials and Methods: A total of 160 metastatic brain cancer patients who were treated with whole brain radiotherapy of 30 Gy between 2002 and 2008 were retrospectively analyzed. The primary tumor oncotype of 20 patients was breast cancer, and that of 103 patients was lung cancer. Except for 18 patients with leptomeningeal seeding, a total of 142 patients were analyzed according to the prognostic factors and the Recursive Partitioning Analysis (RPA) class. Weighted Partitioning Analysis (WPA), with the weighting being done according to the primary tumor oncotype, was performed and the results were correlated with survival and then compared with the RPA Class. Results: The median survival of the patients in RPA Class I (8 patients) was 20.0 months, that for Class II (76 patients) was 10.0 months and that for Class III (58 patients) was 3.0 months (p<0.003). The median survival of patients in WPA Class I (3 patients) was 36 months, that for the patients in Class II (9 patients) was 23.7 months, that for the patients in Class III (70 patients) was 10.9 months and that for the patients in Class IV (60 patients) was 8.6 months (p<0.001). The WPA Class might have more accuracy in assessing survival, and it may be superior to the RPA Class for assessing survival. Conclusion: A new prognostic index, the WPA Class, has more prognostic value than the RPA Class for the treatment of patients with metastatic brain cancer. This WPA Class may be useful to guide the appropriate treatment of metastatic brain lesions.

PPFP(Push and Pop Frequent Pattern Mining): A Novel Frequent Pattern Mining Method for Bigdata Frequent Pattern Mining (PPFP(Push and Pop Frequent Pattern Mining): 빅데이터 패턴 분석을 위한 새로운 빈발 패턴 마이닝 방법)

  • Lee, Jung-Hun;Min, Youn-A
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.623-634
    • /
    • 2016
  • Most of existing frequent pattern mining methods address time efficiency and greatly rely on the primary memory. However, in the era of big data, the size of real-world databases to mined is exponentially increasing, and hence the primary memory is not sufficient enough to mine for frequent patterns from large real-world data sets. To solve this problem, there are some researches for frequent pattern mining method based on disk, but the processing time compared to the memory based methods took very time consuming. There are some researches to improve scalability of frequent pattern mining, but their processes are very time consuming compare to the memory based methods. In this paper, we present PPFP as a novel disk-based approach for mining frequent itemset from big data; and hence we reduced the main memory size bottleneck. PPFP algorithm is based on FP-growth method which is one of the most popular and efficient frequent pattern mining approaches. The mining with PPFP consists of two setps. (1) Constructing an IFP-tree: After construct FP-tree, we assign index number for each node in FP-tree with novel index numbering method, and then insert the indexed FP-tree (IFP-tree) into disk as IFP-table. (2) Mining frequent patterns with PPFP: Mine frequent patterns by expending patterns using stack based PUSH-POP method (PPFP method). Through this new approach, by using a very small amount of memory for recursive and time consuming operation in mining process, we improved the scalability and time efficiency of the frequent pattern mining. And the reported test results demonstrate them.