• Title/Summary/Keyword: Rectus femoris muscle

Search Result 345, Processing Time 0.023 seconds

Relationship between anticipatory postural adjustment of the trunk, dual tasks and physical performance with chronic stroke survivors: a pilot test

  • Hwang, Won Jeong;Cho, Min Kwon;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Objective: The purpose of this study was to investigate the relationship between anticipatory postural adjustment (APA), single task, dual tasks and physical performances. The trunk muscles of APA consist of bilateral erector spinae (ES) and bilateral internal oblique (IO) adnominal muscles, during rapid stepping with the affected or unaffected leg in a sitting posture. Design: Cross-sectional study. Methods: In patients with chronic stroke, electrodes of surface electromyography (EMG) were attached on the bilateral erector spinae (ES), bilateral internal oblique adnominal (IO), and bilateral rectus femoris (RF) muscles. RF acts as the prime mover. The stroke patients performed hip flexion until $20^{\circ}$ as fast as possible at each leg in a sitting posture according to a visual cue. The visual cue unexpectedly appeared on monitor in front of the stroke patient. The single task was the Timed Up and Go (TUG) test. The dual tasks were the TUGconitive, which increased cognitive capacity, and the TUGmanual task, which had an external focus. Results: All EMG data showed earlier onset latency before the prime mover. In affected leg raising, the onset time of unaffected ES muscle of the stroke patients was correlated with the single and dual tasks (p<0.05). In unaffected leg raising, the onset time of the affected IO muscle was related to all the tasks (p<0.05). Gait speed showed a relationship with the unaffected ES muscle only. Conclusions: The trunk muscles of the bilateral ES and bilateral IO play an important role in APA. The single and dual tasks using TUG test were correlated with the APA s of ES and IO muscles. Dual task by the TUG test is a good measuring tool for reflecting the real life in patients with chronic stroke.

The Effects of Action Observational Training on Muscle Onset Time and Asymmetry to Stand Up in with Stroke Patients (동작관찰훈련이 뇌졸중 환자의 일어서기 동작 시 근수축 개시시간과 비대칭성에 미치는 영향)

  • Yi, Min-Young;Shin, Won-Seob;Kim, Kyung-Hwan;Youn, Hye-Jin
    • PNF and Movement
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2014
  • Purpose: To investigate the effect of action observation training on the muscle onset time and symmetrical use of rectus femoris(RF) and gastrocnemius medialis(GCM) during sit-to-stand (STS). Methods: Sixteen patients with stroke entered a single-blind trial and were randomly assigned to the experimental(Action) or control(Landscape) groups. Those in the Action observation group watched video clips showing specific movement and strategies to STS, wheas those in the control group watched video clips of static pictures showing differnet landscapes. All patients was measured the EMG data in the STS on the affected side and unaffected side. The EMG data were collected from RF and GCM while performing the STS task. The EMG onset time and onset time ratio for the RF and GCM were calculated by dividing the EMG onset time of RF and GCM action on the affected side by these on the unaffected side. Results: Onset time of affected side RF, GCM was significantly faster action observation training group than control group(p<.05). But interventions before and after the symmetry did not show a significant increase. Conclusion: There findings suggest that action observation training has a positive effect on the muscle onset time shortened during STS tasks.

Effects of Combining Lower Extremity Strength Exercise With Aerobic Exercise on Lung Capacity and Lower Extremity Muscle Activity in Young Adults (다리근력운동과 유산소운동을 결합한 복합운동이 젊은 성인의 폐활량 및 다리근 활성도에 미치는 영향)

  • Yang-Jin Lee;Dong-Woo Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.69-76
    • /
    • 2023
  • Purpose : This study aimed to compare lung capacity measures (forced vital capacity; FVC, forced expiratory volume at 1 second; FEV1, and FEV1/FVC) and the activities of rectus femoris (RF) and gastrocnemius (GCM) muscles between young adults prescribed aerobic exercise combined with lower limb strength exercise (complex exercise) and those prescribed only aerobic exercise. Methods : We randomly divided 22 young adults into 2 groups: the complex exercise group that combined the leg strengthening and aerobic exercises (n = 11) and the aerobic-exercise-only group (n=11). Before the intervention, the FVC, FEV1, and FEV1/FVC values and the activities of RF and GCM muscles were measured. Measurements were in triplicates, and the average of the 3 measurements was used. The complex exercise group performed the treadmill exercise followed by squats and lunges, and the group performed only the treadmill exercise. Both groups were allocated the same time. Both groups performed the assigned exercise thrice a week for 3 weeks. After the intervention, the FVC, FEV1, and FEV1/FVC values and the activities of RF and GCM muscles were measured again. Results : The FVC and FEV1 values increased significantly in both groups after the intervention (p<.05). RF activity increased significantly after the intervention in the complex exercise group (p<.05), and the magnitude of change in RF activity after the intervention was significantly higher in the complex exercise group than in the aerobic-exercise-only group (p<.05). GCM activity also significantly increased after the intervention in both groups (p<.05). Conclusion : On the basis of our results, we recommend combining leg strengthening and aerobic exercise to improve leg muscle activity along with lung function.

Development and Evaluation of Wearable Smart Clothing for Combined EMG Devices (웨어러블 근전도 디바이스 결합형 스마트의류 개발 및 성능평가)

  • Sojung Lee;Hyelim Kim;Wonyoung Jeong
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.210-220
    • /
    • 2023
  • Recently, smart wearable products, including electromyography (EMG) measurement devices and clothing, have been developed to monitor users' exercise levels, muscle activation, and muscle balance more effectively during fitness activities. However, technical and socioeconomic barriers, such as flexibility and durability, still pose challenges in terms of comfort, ease of wear, and wearability of smart clothing, which includes devices and circuits. To address these issues, this study developed a wearable EMG device integrated with clothing to collect valid EMG signals from desired muscles while maintaining comfort, functionality, and ease of wear. After deriving a combined structure that could stably position the wearable device within the clothing, a prototype was manufactured and evaluated for fit, compression, comfort, and exercise comfort test by ten participants (height = 176.2 cm, weight = 76.4 kg, chest circumference = 101.2 cm). The study found that the prototype had smaller circumferences around the chest, waist, and abdomen compared to commercial products, resulting in lower ratings for wearing comfort and ease of wear. However, the prototype received high ratings for fitting, pressure, and the exercise comfort test. Valid signals were obtained when the EMG device was combined to the prototype for the rectus femoris muscle, indicating stable positioning of the device during exercise.

Involvement of EMG Variables and Muscle Characteristics in Force Steadiness by Level (수준별 힘 안정성에 대한 EMG 변인 및 근육 특성의 관여)

  • Hyeon Deok Jo;Maeng Kyu Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.336-345
    • /
    • 2023
  • The present study was designed to evaluate changes in neuromuscular properties and the structural and qualitative characteristics of muscles during submaximal isometric contractions at low-to-relatively vigorous target forces and to determine their influence on force steadiness (FS). Thirteen young adult males performed submaximal isometric knee extensions at 10, 20, 50, and 70% of their maximal voluntary isometric contraction using their non-dominant legs. During submaximal contractions, we recorded force, EMG signals from vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF), and ultrasound images from the distal RF (dRF). Force and EMG standard deviation (SD) and coefficient of variation (CV) values were used to measure FS and EMG steadiness, respectively. Muscle thickness (MT), pennation angle (PA), echo intensity (EI), and texture features were calculated from ultrasound images to assess the structural and qualitative characteristics of the muscle. FS, neuromuscular properties, and texture features showed significant differences across different force levels. Additionally, there were significant differences in EMG_CV among the quadriceps at the 50% and 70% force levels. The results of correlation analysis revealed that FS had a significant relationship with EMG_CV in VM, VL, and RF, as well as with the texture features of dRF. This study's findings demonstrate that EMG steadiness and texture features are influenced by the magnitude of the target force and are closely related to FS, indicating their potential contribution to force output control.

Changes in the quadriceps-to-hamstring muscle ratio during wall squatting according to the straight leg raise test angle

  • Kim, Jaeeun;Kim, HyeonA;Lee, JuYeong;Lee, HoYoung;Jung, Hyoseung;Cho, YunKi;Choi, HyeMin;Yi, Donghyun;Kang, Daewon;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the muscle activity ratio of the lower limb according to changes in straight leg raise (SLR) test angles on hamstring muscle shortening during squat exercises. Design: Randomized controlled trial. Methods: The subjects were 14 healthy adults who were informed of and agreed to the method and purpose of the study. The participants were classified into SLR groups according to two angles (over $80^{\circ}$ or under $80^{\circ}$) assessed using the SLR tests. After training and practicing the wall squat posture to be applied to the experiment, electromyography (EMG) was used to measure changes in muscle activity during the performance of a wall squat. After stretching, a sequence of pre-stretch tests were performed again, and the active and passive SLR tests were also reconducted; thereafter, a wall squat was performed again by attaching EMG electrodes. The EMG results before and after stretching were compared. Results: The muscle activity of the vastus lateralis oblique muscle increased in both groups. The muscle activity of the vastus medialis oblique muscle decreased in over both group. Rectus femorus activity increased in the under 80-degree groups but decreased in the over 80-degree group. The muscle activity of the biceps femoris muscle decreased after stretching in the over 80-degree group and increased in the under 80-degree group, and the semitendinosus muscle activity after stretching was decreased. The quadriceps-to-hamstring muscle (Q:H) ratio before and after stretching between groups showed that the hamstring muscle ratio decreased after stretching in both groups. Conclusions: The results of this study showed that the Q:H ratio before and after stretching between groups was not significantly different.

Quantitative Evaluation of Spasticity through Separation of Reflex and Mechanical Component Related to Spasticity in Hemiplegic Patients (편마비 환자 경직의 반사적 및 역학적 성분의 분리를 통한 경직의 정량적 평가)

  • Kim, Chul-Seung;Eom, Gwang-Moon;Kim, Ji-Won;Ryu, Je-Chung;Kang, Sung-Jae;Kim, Yo-Han;Park, Byung-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.142-149
    • /
    • 2009
  • The aim of this study was to identify both the mechanical and reflex properties associated with spasticity in hemiplegic patients. Ten hemiplegic patients were included in this study. Multiple pendulum tests were executed for each subject, and knee joint angle and EMG of Rectus Femoris muscle were measured. The neuromusculoskeletal system model was developed from generally accepted mechanism and identified through minimization of the error in the model-predicted pendulum trajectories. The identification was successful in terms of small error in simulated kinematics and high sensitivity and precision of simulated torque against EMG activity. The reflex threshold showed significant difference between different clinical scores (p<0.01) and significant negative correlation (r=-0.93) with the EMG duration. It is expected that the suggested method may help in understanding mechanisms underlying spasticity.

Muscular Activity Analysis in Lower Limbs from Motion and Visual Information of Luge Simulator based Virtual Reality (가상현실 루지 시뮬레이터의 동작과 영상정보별 인체 근육활성도 분석)

  • Kang, Seung Rok;Kim, Ui Ryung;Kim, Kyung;Bong, Hyuk;Kwon, Tae Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.825-831
    • /
    • 2015
  • In this paper, capture motion and visual information from a virtual reality luge simulator to analyze muscular activity in the lower limbs. The Luge Simulator consists of a motion platform with a pneumatic module for weight distribution. We recruited luge athletes and healthy subjects and made real-time surface EMG measurements to estimate the muscular activity in the lower limbs according to the motion protocol of a simulator, and a test was conducted for each subject. The results indicated that the rectus femoris had the highest muscular activity according to the level of the slope and velocity of the luge. The soleus muscle showed a high level of activity during a turn in the luge according to the direction. We found that the development of a virtual reality sports simulator based on physical reaction results could bring positive effects to optimize reality and human cenesthesia.

The Effect of an 8-week Velocity-based Training on Mechanical Power of Elite Sprinters (8주간 속도 기반 트레이닝이 단거리 육상선수의 순발력에 미치는 영향)

  • Jae Ho Kim;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.18-24
    • /
    • 2024
  • Objective: The purpose of this study was to evaluate the effects of an 8-week velocity-based training on the maximum vertical jump in elite sprinters. Method: Ten elite sprinters were participated in this study (age: 21 ± 0.97 yrs., height: 179 ± 3.54 cm, body mass: 72 ± 2.98 kg). An 8-week velocity-based power training was provided to all subjects for twice per week. Their maximum vertical jumps were measured before and after velocity-based training. A 3-dimensional motion analysis with 8 infrared cameras and 4 channels of EMG was performed in this study. A paired t-test was used for statistical verification. The significant level was set at α=.05. Results: There were no statistically significant differences were found between pre and post the training (p>.05). However, most variables included jump record, knee joint ROM, and muscle activation of rectus femoris showed increased pattern after the training. Conclusion: In this study, an 8-week velocity-based training did not showed the significant training effects. However, knee joint movement which is the key role of the vertical jump revealed positive kinematic and kinetic pattern after the training. From this founding, it is believed that velocity-based training seems positively affect the vertical jump which is the clear measurement of mechanical power of sprinter. In addition, to get more clear evidence of the training more training period would be needed.

Comparison of Dynamic Balance Ability and Leg Muscle Properties during Bulgarian Split Squat Exercises using the Visual Block and Unstable Support Plane (시각 차단과 불안정한 지지면을 이용한 불가리안 스플릿 스쿼트 운동 시 동적 균형 능력과 근속성의 비교)

  • Jin-hyun Yang;Gyo-hyeon Lee;Kyung-ho Park;Soo-kyoung Park
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.41-52
    • /
    • 2023
  • Background: Bulgarian split squat (BSS) is beneficial to improve dynamic balance ability and muscle activity of lower extremities, however its effects have not been fully investigated. Therefore, this study aimed to compare changes in dynamic balance ability and muscle properties according to various modifications of BSS exercises. Methods: Thirty healthy male volunteers participated in this study, and they were randomly divided into three different groups. The subjects performed the BSS exercise either on a stable surface with the eyes opened (n=10) or eyes closed (n=10), and on an unstable support plane with eyes opened (n=10) conditions, respectively. Dynamic balance ability was measured via Biodex balance system under the eyes-opened and closed conditions. Additionally, muscle properties of the rectus femoris (RF), vastus medialis (VM) and vastus lateralis (VL) were evaluated. Results: Dynamic balance ability did not show the significant differences among the groups that performed the BSS exercises. However, in the Unstable group, there were significant differences in the overall stability index and anterior posterior stability index under the eyes-closed condition between pre-exercise and post-exercise. In comparison of muscle properties according to the groups, RF muscle showed a significant difference in amount of change of elasticity (p=.038). Additionally, there were significant changes in post measurements of VM muscle tone (p=.016), stiffness (p=.012) and elasticity (p=.002). VL muscle, however had no significant differences in muscle properties. Conclusion: These results indicate that BSS exercises could induce the alteration of RF and VM muscle properties, in particular VM muscle which is susceptible to weakness. Thus, BSS could be applied in various ways as an effective rehabilitation exercise.

  • PDF