• Title/Summary/Keyword: Rectangular section

Search Result 576, Processing Time 0.024 seconds

A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section (Spiral Tube 내에서의 3차원 유동 해석)

  • Hur Nahmkeon;Kim Seongwon
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

Maximum Crippling Load in Eccentrically Compressed rectangular Tubes (편심압축하중을 받는 사각튜브의 최대압괴하중)

  • 김천욱;한병기;정창현;김지홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

Characteristics of Bending Deformation in Aluminum Rectangular Bar by Press Die (알루미늄 각재의 프레스 굽힘 변형 특성)

  • Kim, K.S.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • In the recent years, the production of light-weight products has become important because of increasing demands for the energy savings through weight reduction. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. Bending characteristics of Al rectangular tube with hollow and solid section has been analyzed by FE analysis in press bending with wing-die. Bending stress is affected by punch stroke and rotation of wing-die. There were different sectional sagging characteristics between the solid rectangle section and the hollow rectangle section.

An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • In this paper, an algorithm is presented to simulate numerically the reinforced concrete (RC) columns having any geometric form of section, loaded eccentrically along one or two axes. To apply the algorithm, the columns are discretized into two macro-elements (MEs) globally and the critical sections of columns are discretized into fixed rectangular finite elements locally. A proposed triple simultaneous dichotomy convergence method is applied to find the equilibrium state in the critical section of the column considering the three strains at three corners of the critical section as the main characteristic variables. Based on the proposed algorithm a computer program has been developed for simulation of the nonlinear behavior of the eccentrically-loaded columns. A good agreement has been witnessed between the results obtained applying the proposed algorithm and the experimental test results. The simulated results indicate that the ultimate strength and stiffness of the RC columns increase with the increase in axial force value, but large axial loads reduce the ductility of the column, make it brittle, impose great loss of material, and cause early failure.

A Study on Axial Force - Moment Capacity of High-Strength Concrete Tied Column Sections (고강도 콘크리트 기둥단면의 축력-모멘트 강도에 관한 연구)

  • 박해균;박동규;박영식;손영현;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.300-305
    • /
    • 1996
  • Reinforced concrete column is an effective structural element to take advantage of high strength concrete. This paper presents an experimental and analytical strength of high strength concrete rectangular tied column sections under eccentric loading. The test variables are concrete strength, steel ratios, slenderness and eccentricity. The analytical results of the ACI's rectangular stress block, Zia's modified rectangular stress block, and a trapezoid block are compared with experimentally obtained data. It may be concluded that the trapezoid stress block provided the most reasonable column section capacities for high strength concrete columns.

  • PDF

A Study on the Bending Process for the Circular Curved Tube and Rectangular Curved Tube with Fins (핀이 부착된 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Kim M. G.;Park J. W.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.204-207
    • /
    • 2001
  • The bending process for the circular curved tube and rectangular curved tube with fins can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables. The one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the one by the different hole diameter. The results of the experiment show that the circular curved tube with fins and rectangular curved tube with pins can be formed by the extrusion process and that the curveture of the product can be controlled by the velocity of punch and diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube the folding and wrinkling of thin tube and fins did not happen after the bending processing by the extrusion bending machine.

  • PDF

A Study on the Hot Metal Extrusion Bending Process for the Rectangular Curved Tube (사각단면 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Park D. Y.;Youn S. H.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.212-215
    • /
    • 2001
  • The bending process for the rectangular curved tube can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables, the one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the difference by the different hole diameter. The results of the experiment show that the rectangular curved tube can be formed by the extrusion process and that the curvature of the curved product can be controlled by the velocity of punch and the diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling of thin tube did not happen after the bending processing by the extrusion bending machine.

  • PDF

Extru-Bending Process for Aluminum Tube Products with Rectangular Sections (각단면을 가지는 알루미늄 튜브제품의 압출굽힘가공)

  • 박대윤;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.285-288
    • /
    • 2003
  • The bending phenomenon during extruding one product using four billets can be obtain by the difference of hole diameters in the multi-hole container. The difference of hole diameter caused the difference of billet amount inserted in the die cavity. As results, it can bend during extruding products by the different amount of two billets and by the cohesion of billets in the porthole dies cavity. And the bending curvature can be controlled by the size of holes and billets. The experiments using aluminium material had been done for the rectangular and square curved tube product. The results of the experiment show that the curved aluminum tube product can be bended by the extru-bending process without the defects such as the distortion of section and the thickness change of the wall of tube and the folding and wrinkling. The curvature of product is affected by shape of cross section and the difference of billet diameters. It is known that the welding and extruding and bending can be done simultaneously in the die cavity when a rectangular hollow curved tube would be extruded by porthole dies using four different size billets made of aluminum material.

  • PDF

An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected to Axial Force and Biaxial Bending (2축 휨과 축력을 동시에 받는 철근콘크리트 기둥에 대한 실험적 연구)

  • 김진근;이상순;이수곤;김선영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.55-62
    • /
    • 1999
  • When stress is beyond elastic limit or cracks occur in a reinforced concrete member subjected to axial force and biaxial bending, curvature about each principal axis of uncracked section is influenced by axial force and bending moments about both major and minor principal axes. It is mainly due to the translation and rotation of principal axes of the cross section after cracking. Recently, by considering these effects, a numerical method predicting the behavior of concrete columns subjected to axial force and biaxial bending was proposed. In this study, in order to verify the proposed numerical method and investigate the effects of cracking on the behavior of reinforced concrete columns, a series of tests were carried out for 16 tied reinforced concrete columns with 100×100 mm square and 200×100 mm rectangular sections under various loading conditions. The angle between the direction of eccentricity and the major principal axis of uncracked section were 0, 30, 40° for the square section and 0, 30, 45, 60, 90° for the rectangular section, respectively. A comparison between numerical predictions and test results shows good agreements in ultimate loads, axial force-lateral deflection relations, and lateral deflection trajectories. It is also found, in this limited investigation, that the ACI's moment magnifier method is conservative in both uniaxial and biaxial loading conditions.