• 제목/요약/키워드: Rectangular section

검색결과 576건 처리시간 0.029초

스테레오 PIV를 이용한 워터젯 흡입덕트 내부의 난류유동측정 (Stereoscopic PIV Measurement on Turbulent Flows in a Waterjet Intake Duct)

  • 권성훈;윤상열;전호환;김경천
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.612-618
    • /
    • 2004
  • Stereoscopic PIV measurements were made in the wind tunnel with the actual size waterjet model. The main wind tunnel provides the vehicle velocity while the secondary wind tunnel adjusts the jet issuing velocity. Experiments were performed at the range of jet to vehicle velocity ratio (JVR), 3.75 to 8.0 and the Reynolds number of 220,000 based on the jet velocity and the hydraulic diameter of the waterjet intake duct. Wall pressure distributions were measured for various JVRs. Three dimensional velocity fields were obtained at the inlet and outlet of the intake duct. It is found that severe acceleration is occurred at the lip region while deceleration is noticeable at the ramp side. The detailed three dimensional velocity fields can be used as the accurate velocity input for the CFD simulation. It is interesting to note that there are many different types of vortices in the instantaneous velocity field. It can be considered that those vortices are generated by the corner of rectangular section of the intake and Gortler vortices due to the curved wall. However, typical secondary flow with a pair of counter rotating vortex pair is clearly seen in the ensemble averaged velocity field.

An optimum design study of interlacing nozzle by using Computational Fluid Dynamics

  • Juraeva Makhsuda;Ryu Kyung-Jin;Kim Sang-Dug;Song Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.395-397
    • /
    • 2006
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. The effect of various interlacing nozzle geometries on the interlacing process was studied. The geometries of interlacing nozzles with single or multiple air inlets located across the width of yarn channels are investigated. The basis case is the yarn channel, with a perpendicular main air inlet in the middle. Other cases have main air inlets, slightly inclined double sub air inlets, The yarn channel cross sectional shapes are either semicircular or rectangular shapes. The compressed impinging jet from the main air inlet hole hits the opposing bottom wall of the yarn channel, is divided into two branches, joins with the compressed air coming out from sub air inlet at the bottom and creates two free jets at both ends of the yarn channel. The compressed air movement in the cross-section consists of two opposing directional vortices. The CFD-FASTRAN flow parallel solver was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this pater.

  • PDF

자유낙하수맥 하류부에서의 세굴에 관한 실험적 연구 (Experimental Study on Downstream Local Scour of Free-Falling Jet)

  • 윤세의;이종태
    • 물과 미래
    • /
    • 제28권4호
    • /
    • pp.147-154
    • /
    • 1995
  • 본 연구에서는 특별한 에너지 감세를 위한 수공구조물이 설치되지 않은 중 소규모 단락부 하류부에서 자유낙하하는 수맥으로 인하여 발생되는 비점착성 하상재료의 세굴특성을 수리모형실험을 통하여 분석하였다. 단락수맥 하류부에서의 세굴특성을 분석하기 위하여 먼저 직사각형 단락수맥의 흐름특성을 조사하였으며, 하상재료, 유량, 하류수심을 변화시키면서 세굴공의 직하류부에 생성되는 둔덕(mound)의 유무로 인한 세굴특성을 비교 분석하였다. 평형세굴심 뿐만 아니라 둔덕의 높이도 밀도 후르드수의 함수로 표시되며, 밀도 후르드수는 다른 무차원량 보다 평형세굴심과 비교적 깊은 관계가 있는 것을 확인하였다. 단락부 하류부 하상 보호공의 설계시 둔덕의 영향을 고려해야 한다는 결론을 얻었다.

  • PDF

복합재료 회전축의 진동 및 안정성 해석 (Vibration and Stability Analysis of Composite Spinning Shafts)

  • 서정석;안창기;박상윤;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제25권7호
    • /
    • pp.510-517
    • /
    • 2015
  • The free vibration and stability analysis of a spinning composite shaft modelled as a thin-walled closed beam is performed for several design parameters, such as ply angle, aspect ratio, and spin speed. The governing equations of spinning shafts based on the Timoshenko beam theory are derived via Hamilton's variational principle. Coriolis acceleration and anisotropy of constituent materials are incorporated in the derivation. The equations of motion are then transformed to the standard form of an eigenvalue problem for free vibration and stability analysis. Analytical results both for uniform circular cylindrical shaft and rectangular cross-section shaft are obtained by using extended Galerkin method, and the results are compared with those from FEM ANSYS analysis for a verification.

각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (I) - 엇갈린 요철 배열 - (Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (I) - Cross Rib Arrangements -)

  • 김경민;박석환;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.873-881
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached crossly in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2mm(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (pie) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of cross rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with cross NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with cross NP or PP type ribs.

각도요철 및 곡관부를 가진 회전덕트 내 압력강하 분포 (II) - 평행한 요철 배열 - (Pressure Drop Distributions in Rotating Channels with Turning Region and Angled Ribs (II) - Parallel Rib Arrangements -)

  • 김경민;박석환;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권9호
    • /
    • pp.882-890
    • /
    • 2006
  • The present study investigates the pressure drop characteristics in rotating two-pass ducts. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter $(D_h)$ of 26.67mm. Rib turbulators are attached parallel in the four different arrangements on the leading and trailing surfaces of the test ducts. The ribs have a rectangular cross section of $2m(e){\times}3mm(w)$ and an attack angle of $70^{\circ}C$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio $(e/D_h)$ is 0.075. The results show that the highest pressure drop among each region appears in the turning region for the stationary case, but appears in the upstream region of the second pass for the rotating case. Effects of parallel rib arrangements are almost the same in the first pass for the stationary and rotating cases. In the second pass, however, heat transfer and pressure drop are high for the cases with parallel NN or PP type ribs in the stationary ducts. In the rotating ducts, they are high for the cases with parallel NN or PN type ribs.

평행링크형 발가락을 갖는 4족 보행로봇 발의 비평탄 지면 착지 성능 (Landing Performance of a Quadruped Robot Foot Having Parallel Linked Toes on Uneven Surface)

  • 홍예선;윤승현;김민규
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.47-55
    • /
    • 2009
  • In this study, a robot foot having toes for firm stepping on uneven surface is proposed. The toes are connected to the lower leg by parallel links so that the lower leg can rotate in the rolling and pitching directions during stance phase without ankle joint. The landing performance of the foot on uneven surface was evaluated by relative comparison with that of the most common foot making point contact with the walking surface, since the test conditions considering real uneven surface could be hardly defined for its objective evaluation. Anti-slip margin(ASM) was defined in this study to express the slip resistance of a robot foot when it lands on a projection with half circular-, triangular- or rectangular cross section, assuming that uneven surface consists of projections having these kind of cross sections in different sizes. Based on the ASM analysis, the slip conditions for the two feet were experimentally confirmed. The results showed that the slip resistance of the new foot is not only higher than that of the conventional point contact type foot but also less sensitive to the surface friction coefficient.

티모센코 보 이론에 따른 초기 비틀림각을 갖는 경사기능재 블레이드의 진동 해석 (Vibration Analysis of Pre-twisted Blades with Functionally Graded Material Properties Based on Timoshenko Beam Theory)

  • 유홍희;오유택
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.285-287
    • /
    • 2014
  • Equations of motion for the vibration analysis of rotating pre-twisted beams with functionally graded material properties are derived in this paper. Based on Timoshenko beam theory, the effects of shear and rotary inertia are considered. The pre-twisted beam has a rectangular cross-section and is mounted on a rotating rigid hub with a setting angle. Functionally graded material (FGM) properties are considered along the height direction of the beam. The equations of stretching and bending motion are derived by Kane's method employing hybrid deformation variables. To validate the derived equations, natural frequencies of a rotating FGM pre-twisted beam are compared to those obtained by a commercial software ANSYS. The effects of the pre-twisted angle, slenderness ratio, hub radius, volume fraction exponent, and angular speed on the modal characteristics of the system are investigated with the proposed model.

  • PDF

보강 알루미늄 사각관 보의 굽힘 성능평가 (Bending Performance Evaluation of Reinforced Aluminum Square Tube Beams)

  • 이성혁;최낙삼
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.171-180
    • /
    • 2005
  • Bending performances of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been evaluated using experimental tests combined with theoretical and finite element analyses. A finite element simulation for the three-point bending test was performed. Basic properties of aluminum materials used for initial input data of the finite element simulation were obtained from the true stress-true strain curves of specimens which had been extracted from the Al tube beams. True stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing, and true strains were obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens adhered by aluminum plates were employed fur the bending test. The bending deformation behaviors up to the maximum load described by the numerical simulation were in good agreement with experimental ones. After passing the maximum load, reinforcing plate was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed an excellent bending capability.

2심 냉간성형 각형 CFT기둥-보 접합부의 구조거동 (Structural Behavior of Two-Seam Cold Formed Square CFT Column to Beam Connections)

  • 오헌근;김선희;박찬면;최성모
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.81-90
    • /
    • 2012
  • The concrete-filled tube (CFT) column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. Its Solution, 2 members of ㄷchennel in which Internal diaphragm is installed were welded beforehand and the method of making Rectangular Steel Tube was proposed. According to upside and downside junction shape, Internal diaphragm suggested as symmetric specimen and asymmetric specimen. The upper and lower diaphragm of the Symmetric specimen used the same horizontal and The upper diaphragm of the Asymmetric specimen used the horizontal plate and the lower diaphragm used the vertically plate. In this research, 4 T-shape column to beam steps connections were tested with cyclic loading experiment in order to evaluate the structural capability of the offered connection. Symmetric specimens be a failure in 0.03rad from beam flange. And Asymmetric specimens be a failure in 0.05rad from column interface. The comparison results of All specimens shown similar to energy absorption capacity in 0.02rad.