• Title/Summary/Keyword: Rectangular pontoon

Search Result 6, Processing Time 0.019 seconds

Motion Reduction of Rectangular Pontoon Using Sloshing Liquid Damper (슬로싱 액체 댐퍼를 이용한 사각형 폰툰의 운동 저감)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • The interaction between a sloshing liquid damper (SLD) tank and a rectangular pontoon was investigated under the assumption of the linear potential theory. The eigenfunction expansion method was used not only for the sloshing problem in the SLD tank but also for analyzing the motion responses of a rectangular pontoon in waves. If the frictional damping due to the viscosity of the SLD tank was ignored, the effect of the SLD appeared to be an added mass in the coupled equation of motion. The installation of the SLD tank had a greater effect on the roll motion response than the sway and heave motion of the pontoon. One resonance peak for rolling motion showed up in the case of a frozen liquid in the SLD tank. However, if liquid motion in the SLD tank was allowed, two peaks appeared around the first natural frequency of the fluid in the SLD tank. In particular, the peak value located in the low-frequency region had a relatively large value, and the peak frequency located in the high-frequency region moved into the high-frequency region as the depth of the liquid in the tank increased.

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Effect of Incident Angle of Wave on Floating Pontoon and Moment Resisting Frame (파랑 입사각이 장방형 플로팅 함체와 상부 골조에 미치는 효과)

  • Lee, Young-Wook;Kim, Bo-Ram
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.221-229
    • /
    • 2013
  • To find the influence of incident angle of wave on the moment of 3 storied steel moment resisting frame which is placed on the concrete rectangular pontoon, the fluid dynamic analysis is carried out, varying the period of wave from 5 to 15 second by 2 seconds. As increasing incident angle of wave to longitudinal axis, the influence of RAO-rolling is increased. The moment of longitudinal frame is increased apparently by the wave pressure when the incident angle is $0^{\circ}$. And the moment of the frame due to the wave pressure is decreased as the incident angle is increased. But the moment of frame due to acceleration caused from pitching and rolling is increased. It is shown that the increased moment when incident angle is $90^{\circ}$ is much greater than that of incident angle $0^{\circ}$.

Control of Wave Screening Performance of Floating Breakwaters (부유식 방파에의 파랑 차단 성능 제어)

  • 양우석;조원철;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.230-236
    • /
    • 2001
  • The numerical investigations on the wave-screening characteristics of floating breakwaters are presented. The fluid motion is idealized as linearized, two dimensional potential flow. A finite element model is adopted to analyze the performance of floating breakwaters. Numerical experiments are carried out for two type floating breakwater. One is a conventional pontoon type breakwater with rectangular cross-section, and the other is a side float breakwater which consists of two rectangular shaped floats connected to each other by a frame. To improve the performance of the floating breakwaters, especially for long-period wave conditions, numerical experiments are carried out for the cases attaching the thin plates at the bottom of folats in the vertical direction.

  • PDF

A Study on the Long-Wave Effective Floating Breakwater I: On Trapezoid and Prominence Cross Section (장주기파에 효율적인 부유식방파제에 대한 연구 I: 사다리꼴과 요철 단면형상에 대하여)

  • 김도영;안용호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • In this paper, trapezoid sections and prominence sections were examined to improve the performance of floating breakwater in long waves. The linear potential theory is used and the boundary element method with a matching boundary is employed for numerical computation. The effects of the side slope of the trapezoid section and the geometry ratio of the prominence section on the floating breakwater were examined. It was found that trapezoid sections show lower transmission coefficients than the rectangular sections in the long wave range. In prominence sections the size of the sides are more important than the size of the top. Proper choices of the pontoon type geometry may move the local minimum point of the wave transmission coefficient toward the longer wave ranges and improve the performance of the floating breakwater in the long wave range for a given wave period.

  • PDF

An optimization framework of a parametric Octabuoy semi-submersible design

  • Xie, Zhitian;Falzarano, Jeffrey
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.711-722
    • /
    • 2020
  • An optimization framework using genetic algorithms has been developed towards an automated parametric optimization of the Octabuoy semi-submersible design. Compared with deep draft production units, the design of the shallow draught Octabuoy semi-submersible provides a floating system with improved motion characteristics, being less susceptible to vortex induced motions in loop currents. The relatively large water plane area results in a decreased natural heave period, which locates the floater in the wave period range with more wave energy. Considering this, the hull design of Octabuoy semi-submersible has been optimized to improve the floater's motion performance. The optimization has been conducted with optimized parameters of the pontoon's rectangular cross section area, the cone shaped section's height and diameter. Through numerical evaluations of both the 1st-order and 2nd-order hydrodynamics, the optimization through genetic algorithms has been proven to provide improved hydrodynamic performance, in terms of heave and pitch motions. This work presents a meaningful framework as a reference in the process of floating system's design.