• Title/Summary/Keyword: Rectangular plate

Search Result 733, Processing Time 0.025 seconds

초기응력을 받는 직사각형판의 고유진동수 산정식 개발 (Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates)

  • 박승진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.150-159
    • /
    • 2014
  • 본 논문은 초기하중을 받는 직사각형판 및 역대칭 Angle-Ply 적층판의 좌굴 및 진동특성을 무재하시의 고유진동수를 이용하여 산정하는 간편법을 제시하였다. 마주보는 두변이 단순지지된 직사각형판의 운동방정식은 곡률항을 고려한 Mindlin 판이론과 에너지원리를 이용한 Rayleigh-Ritz법을 이용하여 유도하였다. 초기응력을 받는 직사각형판의 무차원화 고유진동수, 임계좌굴계수 및 동적불안정영역 문제들을 무재하시의 무차원화 고유진동수로서 각각의 특성을 정립하였다. 본 연구에서 제안한 진동특성에 관한 간편산정식의 타당성과 사용성을 입증하기 위해 수치예를 들어 검토하였다.

Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method

  • Kim, Kook-Hyun;Kim, Byung-Hee;Choi, Tae-Muk;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.267-280
    • /
    • 2012
  • An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.

Thermo-hydraulic Effect of Tubular Heat Exchanger Fitted with Perforated Baffle Plate with Rectangular Shutter-type Deflector

  • Md Atiqur Rahman
    • Korean Chemical Engineering Research
    • /
    • 제62권2호
    • /
    • pp.191-199
    • /
    • 2024
  • A study was conducted on a tubular heat exchanger to improve its heat transfer rate by using a novel baffle plate design with discontinuous swirling patterns. The design consisted of perforated baffle plates with rectangular air deflectors positioned at varying angles. The tubes in the heat exchanger were arranged in a consistent alignment with the airflow direction and exposed to a uniform heat flux on their surfaces. Each baffle plate included sixteen deflectors inclined at the same angle and arranged in a clockwise pattern. This arrangement induced a swirling motion of the air inside a circular duct where the heated tubes were located, leading to increased turbulence and improved heat transfer on the tube surfaces. The spacing between the baffle plates was adjusted at different pitch ratios, and the Reynolds number was controlled within a range of 16,000 to 29,000. The effects of pitch ratios and inclination angles on the heat exchanger's performance were analyzed. The results indicated that using a baffle plate with rectangular deflectors inclined at 30° and a pitch ratio of 1.2 resulted in an average increase of 1.29 in the thermal enhancement factor.

비균질 Pasternak 지반위에 얹혀진 박판의 자유진동 해석 (Free Vibration Analysis of Thin Plate on Inhomogeneous Pasternak Foundation)

  • Kim, Il-Jung;Lee, Young-Soo;Oh, Soog-Kyoung;Lee, Hoy-Jin
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.395.2-395
    • /
    • 2002
  • Recently, as size of building structure becomes larger, mat area of building structure is supported on Inhomogeneous foundation. The equipment machineries in building are mostly on basement story. The slab of the lowest basement story with equipment machineries is considerded as concentrated masses on plate supported on foundation. In this paper. vibration analysis of rectangular thin plate is done by use of rectangular finite element with 4 nodes. (omitted)

  • PDF

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Ultimate strength of simply supported plate with opening under uniaxial compression

  • Yu, Chang-Li;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.423-436
    • /
    • 2012
  • Unstiffened plates are integral part of all kinds of structures such as ship and offshore oil platforms. Openings are unavoidable and absolutely reduce the ultimate strength of structures. In this study, the finite element analysis package, ABAQUS, is used to analyze the behavior of unstiffened plate with rectangular opening. The rectangular opening form is divided into two cases. In case1, opening depth is constant, but opening width is varied. Meanwhile, in case2 opening width is fixed and opening depth is varied. Besides, for the two different form opening, the effect of plate slenderness parameter (${\beta}$), opening area ratio (AR) and opening position ratio (PR) on the ultimate strength of plate with opening under axial compression are presented. It has been found that the ultimate strength of plate ofcase1is much more sensitive to the plate slenderness parameter (${\beta}$) and opening area ratio (AR) than that of case2. However, for case1, opening position (PR) almost has no effect on the ultimate strength, whereas, regardingcase2, the influence of opening position (PR) depends on the plate slenderness parameter (${\beta}$). Based on nonlinear regression analysis, three design formulae are not only developed but also approved reasonably for the practical engineering design.

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.

분포하중(分布荷重)을 받는 주변고정(周邊固定) 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with All Edges Built In)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권4호
    • /
    • pp.19-24
    • /
    • 1976
  • Some method of analysis of rectangular plates under distributed load of various intensity with all edges built in are presented in. Analysis of many structures such as bottom, side shell, and deck plate of ship hull, and flat slab, deck systems of bridges is a problem of plate with continuous supports or clamped edges. When the four edges of rectangular plate is simply supported, the double fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and boundary condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a plate under distributed loads of various intensity with all edges built in is carried out by applying Navier solution and Levy's method as well as "Principle of Superposition" In discussing this problem we start with the solution of the problem for a simply supported rectangular plate and superpose on the deflection of such a plate the deflections of the plate by slopes distributed along the all edges. These slopes we adjust in such a manner as to satisfy the condition of no rotation at the boundary of the clamped plate. This method can be applied for the cases of plates under irregularly distributed loads of various intensity with two opposite edges simply supported and the other two edges clamped and all edges simply supported and this method can also be used to solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Exact solution for transverse bending analysis of embedded laminated Mindlin plate

  • Heydari, Mohammad Mehdi;Kolahchi, Reza;Heydari, Morteza;Abbasi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제49권5호
    • /
    • pp.661-672
    • /
    • 2014
  • Laminated Rectangular plates embedded in elastic foundations are used in many mechanical structures. This study presents an analytical approach for transverse bending analysis of an embedded symmetric laminated rectangular plate using Mindlin plate theory. The surrounding elastic medium is simulated using Pasternak foundation. Adopting the Mindlin plate theory, the governing equations are derived based on strain-displacement relation, energy method and Hamilton's principle. The exact analysis is performed for this case when all four ends are simply supported. The effects of the plate length, elastic medium and applied force on the plate transverse bending are shown. Results indicate that the maximum deflection of the laminated plate decreases when considering an elastic medium. In addition, the deflection of the laminated plate increases with increasing the plate width and length.

네 변이 고정된 평판의 진동 및 방사 소음 예측에 관한 연구 (A Study on Prediction of vibration and Sound Radiation by Plate With Four Edges Clamped)

  • 심현진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.743-747
    • /
    • 2003
  • In recent years, several studies of the practical application of active sound and vibration control have been developed to plate to plate response with various boundary conditions. This study considers vibration and sound radiation for the clamped rectangular plate. The radiation of a sound from rectangular plate can be calculated that the velocity of a vibrating plate is analyzed. The vibration formulation is based on a variation method for the vibration of the plate, and assumes no damping, no fluid loading of the structure. And the plate is exited by harmonic point force. The radiation of sound from plate is analyzed in the far field, and is calculated from the Rayleigh integral. The prediction results of vibration and sound level have proved with FEM or BEM.

  • PDF