• Title/Summary/Keyword: Rectangular enclosure

Search Result 91, Processing Time 0.028 seconds

Analysis of Combined Conductive and Radiative Heat Transfer in a Two-Dimensional Rectangular Enclosure Using the Discrete Ordinates Method (구분종좌법에 의한 사각형매질내의 복사 및 전도열전달 해석)

  • 김택영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.341-348
    • /
    • 1991
  • An efficient tool to deal with a multi-dimensional radiative heat transfer is in strong demand to analyze various thermal problems combined either with other modes of heat transfer or with combustion phenomena. The current study examined the discrete ordinates method (DOM) for a coupled radiative and conductive heat transfer in rectangular enclosures in which either nonscattering or scattering medium is present. The results were compared with the other benchmarked approximate solution. The efficiency and accuracy of the DOM were thus validated.

Effect of the Height Change on the Melting Heat Transfer in a Rectangular Enclosure (정사각형 단면을 갖는 용기에서 단면의 크기 변화가 융해 열전달에 미치는 영향)

  • Han, Jin Ho;Ro, Sung Tack
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.208-217
    • /
    • 1990
  • A rectangular test section is devised by assuming two dimensional melting of a solid phase change material heated from two sides which are maintained at constant temperature and allowing a free expansion due to density difference between solid and liquid. The timewise melting shape is recorded photographically by the shadow graph method for several experimental conditions. The analysis shows that the melting process consists of four regimes. At first, the pure conduction heat transfer is dominant, and as time goes by natural convection grows and plays a role greatly. Experiments are carried out varying not only the wall temperature but height of the wall. Each effect of them on the melting process is obtained in the form of combination of dimensionless parameters, $Ste^{0.8}\;FoRa^{0.2}$. An algebraic correlation is suggested, which predicts the melted fraction well.

  • PDF

Field Uniformity Analysis of Reverberation Chamber with Asymmetric Structure (비대칭적 구조 전자파 잔향실 전자기장 균일도 해석)

  • 정삼영;이중근;이황재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.837-843
    • /
    • 2001
  • Conventional reverberation chamber has a rectangular structure including mode stirrers or mode-turned stirrers to obtain the field uniformity inside the chamber. This paper explained the way to improve the field uniformity in an asymmetric structure instead of conventional rectangular structure with right-angled planes. Two types of asymmetric structure were considered. One was an asymmetric reverberation chamber using Quadratic Residue Diffuser and the other was an asymmetric chamber with oblique enclosure including fixed Randomly Made Diffusers. The FDTD simulation method was used to analyze the field homogeneous characteristics of these asymmetric reverberation chambers.

  • PDF

A Study on the Heat Transfer Control Characteristics of Benard Flow a Magnetic Fluids in a Rectangular Enclosure (장방형 용기내 자성유체의 Benard유동에 대한 전열 제어 특성에 관한 연구)

  • Ahn, Jong-kug;Seo, Lee-Soo;Park, Gil-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.32-39
    • /
    • 2004
  • This study deals with the Benard Flow of Magnetic Fluids in a rectangular cavity which the ratio between height and width is 1 : 4 and the base side or left side is a heating face while other sides are to be cooling faces. When Magnetic field was equally impressed, considering the internal rotation of the elementary ferromagnetic particle, we found the following result from the numerical analysis of the GSMAC algorithm applied to the equation of the magnetic fluid. Benard flow is controlled by intensity and direction of magnetic fields, and critical point appears when especially magnetic field with a heating base and side area near H=-7000 and H=-10000 is applied.

A Computational Study of Natural Convection in Vertical Rectangular Enclosures with Partiton Plates of Finite Thermal Conductivity (유한열전도율(有限熱傳導率)의 격판(隔板)을 갖는 수직구형(垂直矩形) 밀폐공간(密閉空間)에서의 자연대류(自然對流)에 관(關)한 수치적(數値的) 연구(硏究))

  • Park, Man-Heung;Lee, Jae-Heon
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1982
  • A theoretical study by numerical method has been performed on the natural convection of an air contained in enclosures. The enclosures have rectangular cross section with one vertical wall heated and the other cooled, and with two horizontal partition plates of finite thermal conductivity. Steady two-dimensional flow was assumed. The computation was executed by means of the Implicit Alternating Direction (I.A.D) finite-difference method. Two partition plates of Aluminium whose thickness were 0.05mm was employed in computation. Isothemals, streamlines, local Nusselt numbers and mean Nusselt numbers were obtained for various Grashof numbers and aspect ratio and these results were compared with those in the case of the enclosure with two horizontal insulated plates. From the present results, the heat transfer in the case of partition plates was greater than that in the case of insulation. This study suggests a method to measure the overall heat-transfer of coefficient in double walls which supported by partition plates for insulative construction.

  • PDF

Natural Convection Heat Transfer in Rectangular Air Enclosures With Adiabatic and Isothermal Horizontal Boundary Conditions (단열 및 등온수평 경계조건을 갖는 직각 밀폐용기내 공기의 자연대류 열전달)

  • 이진호;김무현;모정하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.207-213
    • /
    • 1990
  • Natural convection heat transfer in rectangular air enclosure was studied interferometrically and numerically for the use of adiabatic and constant temperature horizontal boundary conditions. In the isothermal horizontal boundary case with the temperature difference ratio, .DELTA. $T_{v/}$.DELTA. $T_{H}$ .simeq. 1 temperature distribution in the enclosure is strongly stratified and the average Nusselt Number is higher than that of adiabatic horizontal boundary case.ase.

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.

A Fundamental Study on Development of a Wall Structure type Thermal Diode for Energy Saving (에너지 절약을 위한 벽체형 열다이오드 개발에 관한 기초)

  • Pak, E.T.;Chang, Y.G.;Chea, S.S.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.67-73
    • /
    • 1997
  • In order to development of a new wall structure type thermal diode for energy saving, the numerical studies have been performed for natural convection across an rectangular enclosure with the various lengthes of the heat source and sink plate. The governing equations for the two-dimensional, laminar, natural convection process in an enclosure are discretized by the control volume approach which insures the conservative characteristics to be satisfied in the calculation domain, and solved by a elliptic SIMPLE algorithm. The momentum and energy equations are coupled through the buoyancy term.

  • PDF

A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure (개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구)

  • Park, Chan-Kuk;Chu, Byeong-Gil;Kim, Cheol
    • Fire Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

Acoustic and Electrical Analysis of Microspeaker for Mobile Phones (모바일 폰용 마이크로스피커의 음향 및 전기 해석)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.525-536
    • /
    • 2014
  • In this paper, GUI program for microspeaker system simulation program was developed and verified through closed box, vent box and 6th order bandpass enclosure system. By using the pseudo loudspeaker model concept, TS parameters and rear volume of microspeaker were identified. Their suitabilities were proved by comparing test results with simulations of electrical impedance and sound pressure response curves for the three box types; closed box, vent box and 6th order bandpass box. Also, MSSP was found to be effective regardless of the microspeaker's shape, either circular or rectangular shape. MSSP can be used for the microspeaker system simulation, and can give a general prediction of such as; sound pressure level curve, electrical impedance, diaphragm velocity and displacement curve according to multiple design parameters; diaphragm mass, compliance, force factor, front and rear volume, front and rear port's diameter and length.