• Title/Summary/Keyword: Rectangular distribution

Search Result 484, Processing Time 0.025 seconds

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

Numerical prediction of the proximity effects on wind loads of low-rise buildings with cylindrical roofs

  • Deepak Sharma;Shilpa Pal;Ritu Raj
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.277-292
    • /
    • 2023
  • Low-rise structures are generally immersed within the roughness layer of the atmospheric boundary layer flows and represent the largest class of the structures for which wind loads for design are being obtained from the wind standards codes of distinct nations. For low-rise buildings, wind loads are one of the decisive loads when designing a roof. For the case of cylindrical roof structures, the information related to wind pressure coefficient is limited to a single span only. In contrast, for multi-span roofs, the information is not available. In this research, the numerical simulation has been done using ANSYS CFX to determine wind pressure distribution on the roof of low-rise cylindrical structures arranged in rectangular plan with variable spacing in accordance with building width (B=0.2 m) i.e., zero, 0.5B, B, 1.5B and 2B subjected to different wind incidence angles varying from 0° to 90° having the interval of 15°. The wind pressure (P) and pressure coefficients (Cpe) are varying with respect to wind incidence angle and variable spacing. The results of present numerical investigation or wind induced pressure are presented in the form of pressure contours generated by Ansys CFD Post for isolated as well as variable spacing model of cylindrical roofs. It was noted that the effect of wind shielding was reducing on the roofs by increasing spacing between the buildings. The variation pf Coefficient of wind pressure (Cpe) for all the roofs have been presented individually in the form of graphs with respect to angle of attacks of wind (AoA) and variable spacing. The critical outcomes of the present study will be so much beneficial to structural design engineers during the analysis and designing of low-rise buildings with cylindrical roofs in an isolated as well as group formation.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

Evaluating the Airtightness of Medium- and Low-Intermediate-Level Radioactive Waste Packaging Container through Finite Element Analysis (유한요소 해석을 통한 중·저준위 방사성폐기물 포장용기의 밀폐성 평가)

  • Jeong In Lee;Sang Wook Park;Dong-Yul Kim;Chang Young Choi;Yong Jae Cho;Dae Cheol Ko;Jin Seok Jang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.203-209
    • /
    • 2023
  • The increasing saturation challenges in storage facilities for Low- and Intermediate-Level Radioactive Waste call for a more efficient storage approach. Consequently, we have developed a square-structured container that features a storage capacity approximately 20% greater than that of conventional drum-type containers. Considering the need to contain various radioactive wastes from nuclear power usage securely until they no longer pose a threat to human health or the environment, this study focuses on evaluating the sealing efficacy of the newly designed rectangular container using finite element analysis. Since radioactive waste containers typically do not experience external forces except under special circumstances, our analysis simulated the impact of an external force, assuming a fall scenario. After fastening the bolts, we examined the vertical stress distribution on the container by applying the calculated external force. The analysis confirms the container's stable seal.

PHOTOELASTIC ANALYSIS OF STRESS INDUCED BY DIFFERENT TYPE ENDOSSEOUS IMPLANTS (골내 임플랜트의 종류에 따른 광탄성 응력 분석)

  • Chung Chae-Heon;Chang Doo-Ik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.661-678
    • /
    • 1993
  • The purpose of this study was to analyze the stress distribution at supporting bone according to the types of endosseous implants. This investigation evaluated the stress patterns in rectangular photoelastic models produced by four different types of dental implants such as $Br\ddot{a}nemark$, screw type of Steri-Oss, blade type of Steri-Oss, IMZ with IMC and resin tooth using the techniques of quasi-three dimensional photoelasticity. All prostheses were casted in the same nonprecious alloy and were cemented or screwed on their respective implants and abutments. 20 kg of vertical load was applied on the central fossa of casted crown and 16 kg of inclined had was applied on the top third of distal surface of casted crown respectively. The results were as follows : 1. Under the vertical load, screw implants of Steri-Oss and $Br\ddot{a}nemark$ showed increasing stress condition between and around the screw threads along the implant lateral surface and cylindrical implant of IMZ showed the less stress condition along the lateral surface with concentration of stress mostly near the root apex. 2. Under the vertical load, the stress of Steri-Oss blade was distributed uniformly at the alveolar bone under the broad blade. 3. Under the inclined load, the stress concentration of Steri-Oss screw and $Br\ddot{a}nemark$ was developed highly around the mesiocervical bone area on the contralateral side to force application. The stress of $Br\ddot{a}nemark$ with flexible gold glod was more concentrated in the cervical bone area than that of Steri-Oss with stiff screw. 4. Under the inclined load, the stress of Steri-Oss blade broadly was distributed around the mesioceivical bone area and the lower and mesial bone area of the blade. 5. Under the Inclined load, IMZ implant showed the gap between c개wn and fixture due ta deformation of the IMC and IMZ was lower in stress concentration developed around the mesiocervical bone area than $Br\ddot{a}nemark$ and Steri-Oss screw. 6. Under the inclined load, the stress magnitude induced in the mesiocervical bone area of implants was in order of $Br\ddot{a}nemark$, Steri-Oss strew, IMZ and Stsri-Oss blade. 7. Tilting forces as compared to axial forces exerted greater magnitude of stress in the cervical bone area of the implant. 8. In respect of stress distribution, Steri-Oss blade was superior than any other implants and in respect of the stability by horizontal lone, IMB and $Br\ddot{a}nemark$ was inferior than any other implants.

  • PDF

Content Adaptive Pattern Concealment for Nonintrusive Projection-based AR (비간섭 프로젝션 기반 증강현실을 위한 컨텐츠 적응형 패턴 은닉)

  • Park, Han-Hoon;Lee, Moon-Hyun;Seo, Byung-Kuk;Jin, Yoon-Jong;Park, Jong-Il
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • A nonintrusive projection-based AR approach using complementary pattern has been recently proposed and applied to virtual studio. However, the approach faces the tradeoff between the pattern imperceptibility and compensation accuracy. To alleviate the tradeoff, we propose a content adaptive pattern concealment approach. The projector input images (AR images) are divided into rectangular regions and spatial variation and color distribution are computed in the regions. Based on the spatial variation and color distribution, we embed locally different strength of pattern images into different color channels. It is demonstrated that the proposed approach has two opposite advantages by comparing it with the previous (non-adaptive) approach through a variety of experiments and subjective evaluation. Our content adaptive approach can obtain the same performance using weaker pattern than the previous approach and thus significantly improve the imperceptibility of the pattern. On the contrary, our content adaptive approach can make strong pattern less perceptible and thus produce better compensation results.

  • PDF

Regeneration of the Retarded Time Vector for Enhancing the Precision of Acoustic Pyrometry (온도장 측정 정밀도 향상을 위한 시간 지연 벡터의 재형성)

  • Kim, Tae-Kyoon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • An approximation of speed of sound in the measurement plane is essential for the inverse estimation of temperature. To this end, an inverse problem relating the measured retarded time data in between set of sensors and actuators array located on the wall is formulated. The involved transfer matrix and its coefficient vectors approximate speed of sound of the measurement plane by using the radial basis function with finite number of interpolation points deployed inside the target field. Then, the temperature field can be reconstructed by using spatial interpolation technique, which can achieve high spatial resolution with proper number of interpolation points. A large number of retarded time data of acoustic paths in between sensors and arrays are needed to obtain accurate reconstruction result. However, the shortage of interpolation points due to practical limitations can cause the decrease of spatial resolution and deterioration of the reconstruction result. In this works, a regeneration for obtaining the additional retarded time data for an arbitrary acoustic path is suggested to overcome the shortage of interpolation points. By applying the regeneration technique, many interpolation points can be deployed inside the field by increasing the number of retarded time data. As a simulation example, two rectangular duct sections having arbitrary temperature distribution are reconstructed by two different data set: measured data only, combination of measured and regenerated data. The result shows a decrease in reconstruction error by 15 % by combining the original and regenerated retarded time data.

Measurements of Void Concentration Parameters in the Drift-Flux Model (상대유량 모델내의 기포분포계수 측정에 관한 연구)

  • Yun, B.J.;Park, G.C.;Chung, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 1993
  • To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.

  • PDF

The Prototype and Structure of the Water Supply and Drainage System of the Wolji Pond During the Unified Silla Period (통일신라시대 월지(月池) 입·출수 체계의 원형과 구조)

  • Kim, Hyung-suk;Sim, Woo-kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.124-141
    • /
    • 2019
  • This research explored the relationship between the water quality issue of Wolji Pond (Anapji Pond) with the maintenance of the channel flow circulation system. The water supply and drainage system closely related to the circulation system of pond has been reviewed, rather than the existing water supply and drainage system that has been analyzed in previous studies. As a result of reviewing the water supply system, it has been learned that the water supply system on the southeastern shore of Wolji Pond, being the current water supply hole, has been connected to the east side garden facility (landscaping stone, curved waterway, storage facility of water) between the north and south fence and the waterway. This separate facility group seems to have been a subject of the investigation of the eastern side of Wolji Pond, with the landscaping stones having been identified in the 1920's survey drawings. The water supply facility on the southeastern shore, being the suspected water supply hole, seems to have some connection with the granite waterway remaining on the building site of Imhaejeon (臨海殿) on the southern side of Wolji Pond. It is inferred that it provides clean water, seeing that the slope towards the southwestern shore of Wolji Pond becomes lower, the landscaping stones have been placed in the filter area, and it is present in the 1920's survey drawings and the water supply hole survey drawing of 1975. The water drainage facility on the northern shore is composed of five stages. The functions of the wooden waterway and the rectangular stone water catchment facility seem not to be only for the water drainage of Wolji Pond. In light of the points that there are wood plugs in the wooden waterway and that there is a water catchment facility in the final stage, it is judged that the water of Balcheon Stream (撥川) may be charged in reverse according to this setup. Namely, the water could enter and exit in either direction in the water drainage facility on the northern shore It also seems that the supply to the wooden waterway could be opened and shut through the water catchment facility of rectangular stone group as well. The water drainage facility on the western shore is very similar to the water drainage facility on the northern shore, so it is difficult to avoid the belief that it existed during the Silla Dynasty, or it has been produced by imitating the water drainage facility on the northern shore at some future point in time. It seems to have functioned as the water drainage facility for the supply of agricultural water during the Joseon Dynasty. The water supply and drainage facilities in Wolji Pond have been understood as a systematized distribution network that has been intertwined organically with the facility of Donggung Palace, which was the center of the Silla capital. Water has been supplied to each facility group, including Wolji Pond, through this structure; it includes the drainage system connecting to the Namcheon River (南川) through the Balcheon Stream, which was an important canal of the capital center.