• Title/Summary/Keyword: Rectangular column

Search Result 195, Processing Time 0.031 seconds

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • In this paper, an algorithm is presented to simulate numerically the reinforced concrete (RC) columns having any geometric form of section, loaded eccentrically along one or two axes. To apply the algorithm, the columns are discretized into two macro-elements (MEs) globally and the critical sections of columns are discretized into fixed rectangular finite elements locally. A proposed triple simultaneous dichotomy convergence method is applied to find the equilibrium state in the critical section of the column considering the three strains at three corners of the critical section as the main characteristic variables. Based on the proposed algorithm a computer program has been developed for simulation of the nonlinear behavior of the eccentrically-loaded columns. A good agreement has been witnessed between the results obtained applying the proposed algorithm and the experimental test results. The simulated results indicate that the ultimate strength and stiffness of the RC columns increase with the increase in axial force value, but large axial loads reduce the ductility of the column, make it brittle, impose great loss of material, and cause early failure.

Enhanced UV-Visible Absorbance Detection in Capillary Electrophoresis Using Modified T-Shaped Post-Column Flow Cell

  • Lim, Kwan-Seop;Kim, Su-Hyeon;Hahn, Jong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.295-300
    • /
    • 2002
  • The construction of the T-shaped post-column flow cell has been changed to enhance the practicability as a UV-visible absorbance detector for capillary electrophoresis. In this new design, a rectangular cube-shaped inner structure is employed, which completely fits the outer rectangular tubing. This arrangement has greatly facilitated the fabrication of the T-cells. In addition, the volume for the auxiliary flow has been dramatically reduced down to 300 ${\mu}L$, and its volume flow rate is optimized at 4.2 ${\mu}L$/min. The short optical path length in the sheath flows (500 ${\mu}m$ on each side) minimizes background absorption, and thus enhances its performance in low-UV wavelengths. We have optimized the auxiliary flow rate at 50 ${\mu}m$/s, so that migration times are insensitive to the flow rate. This optimization has improved repeatabilities in migration times and peak heights. A double-beam detection scheme using a pair of photodiodes is employed to increase the signal-to-noise ratio.

A Study on the Strength of H Beam-to-Rectangular Tube Column Connections with Exterior Diaphragms by Simplified Tension Test (단순 인장 실험에 의한 외부 스티프너를 갖는 각형 강관기둥과 H형강보 접합부의 최대내력에 대한 연구)

  • Park, Jong Won;Kang, Hae Kwan;Lee, Sang Hoon;Kim, Young Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.25-35
    • /
    • 1998
  • A moment connection of H beam-to-rectangular tube column with external stiffeners was proposed. A formula to predict the ultimate strength of the connection was derived based on the yield line mechanism. Experimental investigation was performed to determine the applicability of the connection type and the strength formula. The ultimate strengths computed by the formula agreed well with the experimental values.

  • PDF

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

Seismic Performance of Octagonal Flared RC Columns using Oblong Hoops (장방형 띠철근을 이용한 팔각형 플레어 RC 기둥의 내진성능)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2015
  • Transverse steel bars are used in the plastic hinge zone of columns to insure adequate confinement, prevention of longitudinal bar buckling and ductile behavior. Fabrication and placement of rectangular hoops and cross-ties in columns are difficult to construct. Details of reinforcement for rectangular section require a lot of rectangular hoops and cross-ties. In this paper, to solve these problems, the new lateral confinement method using oblong hoop is proposed for the transverse confinement of the flared column. It can be the alternative for oblong cross-section and flared column with improved workability and cost-efficiency. The final objectives of this study are to suggest appropriate oblong hoop details and to provide quantitative reference data and tendency for seismic performance or damage assessment based on the drift levels such as residual deformation, elastic strain energy. This paper describes factors of seismic performance such as ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio and effective stiffness.

An Experimental and Analytical Study on Axial Force-Moment Capacity of High-Strength Concrete Column under Eccentric Loads (편심을 받은 고강도 콘크리트 기둥의 출력-모멘트 강도에 관한 실험 및 해석적 연구)

  • 최창익;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.468-474
    • /
    • 1997
  • High strength concrete is a more effective material for columns subject to axial force and moment than for other structural elements. The purpose of this study is to review strength calculation methods for high strength concrete columus by comparison of analytical values and experimental results. The variables of column test under eccentric loading were concrete compressive strength, longitudinal steel ratio, and eccentricity of load. The tied column sections of 120×120mm and 210×210mm were tested and the eccentricity of load varied in the range from 0.16 times to 0.54 times the column depth. The analytical results using the stress-strain relationship to 0.54 times the column depth. The analytical results using the stress-strain relationship as well as the ACI's rectangular block, Zia's modified block, and the trapezoidal block are compared with experimentally obtained data, and discussed in this paper.

  • PDF

Study on the performance of concrete-filled steel tube beam-column joints of new types

  • Liu, Dianzhong;Li, Hongxian;Ren, Huan
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.547-563
    • /
    • 2020
  • In this paper, the influence of axial compression ratio on the mechanical properties of new type joints of side span of rectangular concrete-filled steel tubular column-H-type steel beam is studied. Two new types of side-span joints of rectangular concrete-filled steel tubular column-H-type steel beam are designed and quasi-static tests of five new type joints with 1:2 scale reduction ratios are performed. The axial compression ratio of joint JD1 is 0.3, 0.4 and 0.5, and the axial compression ratio of joint JD2 is 0.3 and 0.5. In the joint test, different axial forces were applied to the top of the column according to different axial compression ratios, and low-cyclic reciprocating load was applied on the beam. The stress and strain distribution, beam and column deformation, limit state, failure process, failure mechanism, stiffness degradation, ductile deformation and energy dissipation capacity of the joint were measured and analyzed. The results show that: with the increase of axial compression ratio, the ultimate bearing capacity of the joint decreases slightly, the plastic deformation decreases, and the stiffness and ductility decrease. According to the energy dissipation curve of the specimen, the equivalent damping coefficient also increases with the increase of axial compression ratio in a certain range, indicating that the increase of axial compression ratio can improve the seismic performance of the joint to a certain extent. The finite element method is used to simulate the joint test, and the test results are in good agreement with the simulation results.

Stiffness model for "column face in bending" component in tensile zone of bolted joints to SHS/RHS column

  • Ye, Dongchen;Ke, Ke;Chen, Yiyi
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.637-656
    • /
    • 2021
  • The component-based method is widely used to analyze the initial stiffness of joint in steel structures. In this study, an analytical component model for determining the column face stiffness of square or rectangular hollow section (SHS/RHS) subjected to tension was established, focusing on endplate connections. Equations for calculating the stiffness of the SHS/RHS column face in bending were derived through regression analysis using numerical results obtained from a finite element model database. Because the presence of bolt holes decreased the bending stiffness of the column face, this effect was calculated using a novel plate-spring-based model through numerical analysis. The developed component model was first applied to predict the bending stiffness of the SHS column face determined through tests. Furthermore, this model was incorporated into the component-based method with other effective components, e.g., bolts under tension, to determine the tensile stiffness of the T-stub connections, which connects the SHS column, and the initial rotational stiffness of the joints. A comparison between the model predictions, test data, and numerical results confirms that the proposed model shows satisfactory accuracy in evaluating the bending stiffness of SHS column faces.

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.