• Title/Summary/Keyword: Rectangular barrier

Search Result 22, Processing Time 0.017 seconds

Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration

  • Kim, Seong-Gon;Kim, Min-Keun;Kweon, HaeYong;Jo, You-Young;Lee, Kwang-Gill;Lee, Jeong Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.11.1-11.8
    • /
    • 2016
  • Background: Silk cocoon is composed of multiple layers. The natural silk cocoon containing all layers was cut as a rectangular shape as defined as total group. The inner and outermost layers were removed from the total group and the remained mat was defined as the middle group. The objectives of this study was to compare the total group with the middle group as a barrier membrane for the guided bone regeneration. Methods: The effects of these materials on the cellular proliferation and alkaline phosphatase (ALP) expression of MG63 cells were explored. For comparing bone regeneration ability, bilateral bone defects were created in calvarial areas in ten adult New Zealand white rabbits. The defects were covered with silk membranes of the middle group, with silk membrane of the total group used as the control on the contralateral side. The defects were allowed to heal for 4 and 8 weeks. Micro-computerized tomography (${\mu}CT$) and histological examination were performed. Results: The middle group exhibited a higher MTT value 48 and 72 h after treatment compared to the total group. ALP expression was also higher in the middle group. The results of ${\mu}CT$ and histologic examination showed that new bone formation was significantly higher in the middle group compared to the total group 8 weeks postoperatively (P < 0.05). Conclusions: In conclusion, the middle layer of the silk cocoon supports guided bone regeneration better than unprocessed silk cocoon.

Cerebral Infarction Mimicking Skeletal Metastases on Tc-99m MDP Bone Scintigraphy

  • Lim, Seok-Tae;Park, Soon-Ah;Sohn, Myung-Hee;Yim, Chang-Yeol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.433-435
    • /
    • 2000
  • A 6000-year-old male with carcinoma of the prostate and cerebral infarction underwent a Tc-99m MDP bone scintigraphy for the evaluation of skeletal metastases. Bone scintigraphy (Fig. 1) showed multiple areas of increased uptake of Tc-99m MDP in the skull, spine, and ribs representing skeletal metastases. Two different patterns of uptake occurred in the skull region (Fig. 1A-C); one represents bony metastasis and the ether represents cerebral infarction. The shape, size, location, intensity, and border of the increased uptake differed between the two lesions. An oval-shaped pattern with smaller size, greater intensity and more sharply defined border in the frontal region was consistent with bony metastasis. A rectangular-shaped pattern with larger size, lesser intensity and relatively indistinct border in the temporo-parieto-occipital region was consistent with cerebral infarction. Increased uptake of bone-seeking radiotracers in cerebral infarction has been reported previously.$^{1-4)}$ A suggested mechanism by which bone-seeking radiotracers accumulate in the necrotizing cerebral tissue is an alteration of the blood-brain barrier induced during cerebral infarction, which results in entry of the radiotracers into the extracellular space of the brain.$^{4)}$ Brain CT (Fig. 2) performed 7 days before and one month after the bone scintigraphy revealed lesions on the right temporo-parieto-occipital region consistent with acute hemorrhagic and chronic cerebral infarction, respectively.

  • PDF