• Title/Summary/Keyword: Rectangular Core

Search Result 135, Processing Time 0.028 seconds

Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor (2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발)

  • 박해석;심동식;나경원;황준식;최상언
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

B-H Loop Measurement of a High Tensile Steel Plate (사각판재형 강재의 자기특성측정)

  • Kim, Young-Hak;Kim, Ki-Chan;Shin, Kwang-Ho;Kim, Hwi-Seok;Yoon, Kwan-Seob;Yang, Chang-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • Minor B-H loop measurement for a rectangular high tensile steel was obtained by using Labview. A ferrite cores of high permeance with primary and secondary windings on the steel plate were used to form a closed loop of magnetic flux. To compensate errors due to an extremely small gap between a pair of ferrite core, and between the ferrite core and the rectangular high tensile steel, quadratic function of least square method was used. Also a 3D FEM magnetic analysis tool was used to measure H and B of the steel. B-H loop of the high tensile steel plate can be measured up to 520 A/m of a magnetic field and 0.15 T of a magnetic flux density.

A theoretical Analysis and CFD Simulation on the Ceramic Heat Exchanger (세라믹 열교환기의 이론해석 및 CFD 시뮬레이션)

  • Paeng, Jin-Gi;Yoon, Young-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.282-290
    • /
    • 2009
  • A ceramic monolith heat exchanger is studied to find the performance of heat transfer and pressure drop by numerical computation and $\xi$-NTU method. The numerical computation was performed throughout the domain including fluid region in exhaust gas-side rectangular ducts, ceramic core and fluid region in air-side rectangular duct with the air and exhaust in cross flow direction. In addition, the heat exchanger was also analyzed to estimate the performance by conventional $\xi$-NTU method with several Nusselt number correlations for flow in rectangular duct from literature. By comparisons of both performances by the numerical computation and the $\xi$-NTU method, the effectiveness by $\xi$-NTU method was closest to the result by numerical computation within a relative error of 2.14% when Stephan's Nusselt number correlation was adopted to the $\xi$-NTU method among the several correlations.

A Numerical Study on the Convective Mass Transfer in Horizontal Rectangular Enclosures (수평 직사각 밀폐공간에서의 대류물질전달에 관한 수직적 연구)

  • 배대석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.294-302
    • /
    • 1998
  • The charateristics of the convective mass transfer in horizontal rectangular enclosure with horizontal concentration gradients are analyzed. The effect of Grashof number(Gr) and aspect ratio(L/H) is investigated numerically using the control-volume method. Numerical results are obtained for Grashof numbers between $10^4$ and $10^6$ aspect ratios from 1 to 100 and results are compared with existing andlytical results. It is found that there exists a well defined aspect ratio for which the mean Sherwood number is maximum and the core flow changes from parallel to non-parallel at $Gr^2{Sc^2}(A^{-3}}{\geq}{10^5}$ and in the Ralongrightarrow0 regime the numerical results agreed very well with correlation derived from analytical results.

  • PDF

Simulation Tool of Rectangular Deflection Yoke for CRT

  • Woo, Duck-Kee;Park, Jong-Jin;Cheun, Jong-Mok;Park, Moo-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1141-1146
    • /
    • 2003
  • We have developed the three-dimensional simulation tool for the design of deflection yoke. This tool consists of a modeler, a solver and a post-processor. The modeler easily makes models of Deflection Yoke (DY) and ferrite core (Circle, RAC and RTC) by the parameters and supports several element types (line, surface and quadrilateral). The solver calculates charge density and magnetic field of DY by boundary element method (BEM). We can simply evaluate misconvergence, distortion and inductance of DY in the post-processor, so we apply this simulation tool to 32" rectangular deflection yoke. We can conveniently implement the efficient development of DY in the future.

  • PDF

The Performance of Micro Fluxgate Sensor with Magnetic Core Shape (자성체 코어 형상에 따른 마이크로 플럭스게이트 센서의 검출 특성)

  • 조중희;최원열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.508-514
    • /
    • 2004
  • A fluxgate magnetic sensor consists of a solenoid excitation coil, pick-up coil, and magnetic core. We presents the effect of magnetic core shape in a micromachined fluxgate sensor. To observe the performance of fluxgate sensor with magnetic core side width and gap, side width of 125 ${\mu}{\textrm}{m}$, 250 ${\mu}{\textrm}{m}$, and 500 ${\mu}{\textrm}{m}$ were designed in a rectangular-ring shaped core and the gaps of 0 ${\mu}{\textrm}{m}$, 50 ${\mu}{\textrm}{m}$, and 100 ${\mu}{\textrm}{m}$ were also fabricated in a racetrack shaped core. The solenoid coils and magnetic core were separated by benzocyclobutane(BCB) which had high insulation and good planarization characters. Copper coil patterns of 10 ${\mu}{\textrm}{m}$ width and 6${\mu}{\textrm}{m}$ thickness were electroplated on Ti(300 $\AA$) / Cu(1500 $\AA$) seed layers. 3 ${\mu}{\textrm}{m}$ thick N $i_{0.8}$F $e_{0.2.}$(permalloy) film for the magnetic core was also electroplated under 2000 gauss to induce the magnetic anisotropy. The magnetic core had the high DC effective permeability of ∼1,300 and coercive field of ∼0.1 Oe. Because the magnetic cores of 500 ${\mu}{\textrm}{m}$ side width and 0 gap had a low magnetic flux leakage, high sensitivity of ∼350 V/T were measured at excitation condition of 3 $V_{P-P}$ and 2 MHz square wave. The power consumption of ∼14 ㎽ was measured. The fabricated fluxgate sensor had the very small actual size of 3.0${\times}$1.7 $\textrm{mm}^2$. When two fluxgates were perpendicularly aligned in terrestrial field, their two-axis output signals were very useful to commercialize an electronic azimuth compass for the portable navigation system.m.m.m.

A MICRO FLUXGATE SENSOR IN PRINTED CIRCUIT BOARD (PCB) (인쇄회로 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;나경원;강명삼;최상언
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.151-155
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon with extremely high DC permeability of ∼100,000 and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3${\times}$5.7m㎡. Excellent linear response over the range of -100${\mu}$T to +100${\mu}$T is obtained with 540V/T sensitivity at excitation square wave of 3V$\_$P-P/ and 360kHz. The very low power consumption of ∼8mW was measured. This magnetic sensing element which measures the lower fields than 50${\mu}$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.

  • PDF

Embedded Micro Fluxgate Sensor in Printed Circuit Board (PCB) (PCB 기판에 내장된 마이크로 플럭스게이트 센서)

  • 최원열;황준식;강명삼;최상언
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.702-707
    • /
    • 2002
  • This paper presents a micro fluxgate sensor in printed circuit board (PCB). The fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a micro patterned amorphous magnetic ribbon and the core has a rectangular-ring shape. The amorphous magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. Four outer layers as an excitation and pick-up coils have a planar solenoid structure. The chip size of the fabricated sensing element is 7.3$\times$5.7$\textrm{mm}^2$. Excellent linear response over the range of -100$\mu$T to +100$\mu$T is obtained with 540V/T sensitivity at excitation square wave of 3 $V_{p-p}$ and 360kHz. The very low power consumption of ~8mW was measured. This magnetic sensing element, which measures the lower fields than 50$\mu$T, is very useful for various applications such as: portable navigation systems, military research, medical research, and space research.h.

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

Transient Simulations of Concrete Ablation due to a Release of Molten Core Material (방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의)

  • Kim, H.Y.;Park, J.H.;Kim, H.D.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF