• Title/Summary/Keyword: Rectangular Aperture

Search Result 59, Processing Time 0.026 seconds

Characteristics and Errors of Four Acoustic Holographies (네 가지 음향 홀로그래피의 특성 및 오차)

  • 김시문;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.950-967
    • /
    • 1995
  • Acoustic holography makes it possible to reconstruct the acoustic field based on the measurement of the pressure distribution on the hologram surface. Because of the merit that one can obtain an entire three-dimensional wave field from the data recorded on a two-dimensional surface, the holographic method has been widely studied. Being an experimental method, holography has an unavoidable error which is generate by sampling in space and frequency domain and finite aperture size. Its magnitude is dependent on the space and frequency domain and finite aperture size. Its magnitude is dependent on the shape of hologram surface, acoustic holography may be classified into four types of holography : rectangular type planeholography, circular type plane holography, cylindrical holography and spherical holography. In this paper, four types of holography are studied by modal summation method. Numerical simulation is performed using a monopole source with varying parameters to find out effects to the estimation error in each holography. Experiments of circular type plane holography and cylindrical holography explain strong relation between the shape of hologram surface and the acoustic field.

Characteristics of Insertion Loss of Transmission Line with Different Line Length Crossing a Rectangular Aperture in a Backplane (백 플레인의 개구를 통과하는 길이가 다른 전송 선로의 삽입 손실 특성)

  • Jung, Sung-Woo;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.237-243
    • /
    • 2008
  • This paper presents the backplane effects for two-wire transmission line with different line length crossing the rectangular aperture in an infinite ground backplane. The FDTD method is used to determine the characteristics of the backplane insertion loss and return loss of the transmission line in accordance with the transmission line spacing and additional wire lengths. The results show that the insertion gain is obtained for the narrow spacing of the transmission line and the insertion loss is appeared for the transmission line with the additional wire The measurements of return loss are performed to verify the theoretical analysis.

A Study on the Efficient IFEM for Analyzing an Arbitrary-shaped Iris in Rectangular Waveguide (구형 도파관내 임의 형상 Iris 해석을 위한 효율적인 반복 유한 요소법에 관한 연구)

  • 박종국;김병성;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1175-1181
    • /
    • 2001
  • An efficient hybrid method is proposed to analyze discontinuities in a rectangular waveguide. Only with a small number of meshes around a discontinuity, the typical finite element method is shown to give an exact solution through several iterative updates of the boundary conditions. To show the validity of the proposed method, a simple circular aperture in a rectangular waveguide is analyzed and its result is compared with FEBIM.

  • PDF

Morphological study of the genus Eucampia (Bacillariophyceae) in Korean coastal waters

  • Lee, Jun Mo;Lee, Jin Hwan
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.235-247
    • /
    • 2012
  • Regardless of continuous researches, recent researches on the genus Eucampia (Bacillariophyceae) have focused mainly on E. zodiacus f. zodiacus In the present study, species of the genus Eucampia have been studied based on their morphological characteristics. Eucampia species were collected at 24 sites from July 2008 to June 2011 in Korean coastal waters. Species were mainly identified based on the shape of valve, ocellus, and aperture, along with the length and shape of the bipolar elevations. As a result, five Eucampia species were identified: Eucampia cornuta, E. groenlandica, E. zodiacus f. zodiacus, E. zodiacus f. cylindrocornis, and E. zodiacus var. cornigera. E. cornuta and E. groenlandica have long pervalvar axis length, but the others display short or moderate length. Ocellus shape of E. cornuta, E. groenlandica and E. zodiacus f. cylindrocornis are linear ribs, whereas E. zodiacus f. zodiacus and E. zodiacus var. cornigera have radial ribs with central area. E. cornuta and E. zodiacus f. cylindrocornis have long and narrow cylindrical elevations. E. groenlandica and E. zodiacus f. zodiacus have short and broad elevations with blunt tips. E. zodiacus var. cornigera has long and broad conical elevations. In terms of aperture shape, E. cornuta has large elliptical form, E. groenlandica has almost circular to rounded rectangular form, E. zodiacus f. zodiacus has narrow and elliptical rounded rectangular to a narrow lanceolate form, E. zodiacus f. cylindrocornis has almost rectangular form, and E. zodiacus var. cornigera has rounded rhombic form. On the basis of elevations in broad girdle view, 5 Eucampia taxa could be divided into 3 types: 'narrow H type', E. cornuta and E. groenlandica; 'regular H type', E. zodiacus f. cylindrocornis and E. zodiacus var. cornigera (partial); 'wide H type', E. zodiacus f. zodiacus (almost).

Approximate Method of Transmission Lines Crossing a Rectangular Aperture in a Backplane (백 플레인의 사각형 개구를 관통하는 전송 선로의 근사 해석법)

  • Jung, Sung-Woo;Choi, Beom-Jin;Choi, Bong-Yeol;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1056-1064
    • /
    • 2010
  • This paper presents the approximate analysis method for the symmetric transmission line crossing the aperture in an backplane. The method of moments is used to determine the aperture impedance for the construction of the equivalent transmission line that the aperture impedance apply to the transmission line as the shunt impedance. As the results, the insertion loss increases at the specific frequency range for the impedance matching. In the case of the mismatching, we are confirmed to the insertion gain at the specific frequency. Also the horizontal length of the aperture affects to the transmission line better than vertical length. The measurement of the insertion loss is performed to verify the theoretical analysis.

Dual-Band Microstrip Antenna for ISM Band using Aperture Coupled Cross Patch (개구 결합된 십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나)

  • 박기동;정문숙;임영석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.479-488
    • /
    • 2003
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4 GHz and 5.8 GHz using finite-difference time-domain method(FDTD). Cross patch 130 by aperture in the ground plane of microstrip line is proposed as radiation element of antenna which is 2 rectangular patch is overlapped. To design antenna, change of input impedance is examined by length change of aperture and stub. And center frequency and - 10 dB bandwidth are investigated by change of length and width in radiation element. Measured result about reflection loss confirm that agree well with simulation results of FDTD and IE3D. And 3 dB beam width, front to back ratio and maximum gain is presented by measuring radiation pattern of antenna in frequency 2.43 GHz and 5.79 GHz.

MULTI-APERTURE IMAGE PROCESSING USING DEEP LEARNING

  • GEONHO HWANG;CHANG HOON SONG;TAE KYUNG LEE;HOJUN NA;MYUNGJOO KANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.56-74
    • /
    • 2023
  • In order to obtain practical and high-quality satellite images containing high-frequency components, a large aperture optical system is required, which has a limitation in that it greatly increases the payload weight. As an attempt to overcome the problem, many multi-aperture optical systems have been proposed, but in many cases, these optical systems do not include high-frequency components in all directions, and making such an high-quality image is an ill-posed problem. In this paper, we use deep learning to overcome the limitation. A deep learning model receives low-quality images as input, estimates the Point Spread Function, PSF, and combines them to output a single high-quality image. We model images obtained from three rectangular apertures arranged in a regular polygon shape. We also propose the Modulation Transfer Function Loss, MTF Loss, which can capture the high-frequency components of the images. We present qualitative and quantitative results obtained through experiments.

The Diffraction Phenomena on Rectangular and Circular Apertures (구형 및 원형 Aperture에서의 회절 현상)

  • 홍의석;오일덕
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1752-1758
    • /
    • 1989
  • For many different types of apertures the diffraction phenomenon on the electromagnetic wave is analyzed by unsing Kirchhoff and Fresnel's diffraction theory. The signal intensity in variation of aperture's parameters is numerically calculated by a computer. To obtain the experimental data many types of apertures were made on an acryl board on which a special materical Elecoat was painted for preventing some reflections on the board surface and transmissions through it. Two Yagi antennas were used for a transmitting and receiving antenna and the frequency was 820MHz. The theoretichal values agreed reasonably with experimental data and these results will be used for a system design in the mobile communication between many buildings in the middle of a city.

  • PDF

Design of Dual-band Microstrip Antenna for ISM Bandwidth using Cross Patch (십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나 설계)

  • 박기동;정문숙;임영석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.241-245
    • /
    • 2002
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4㎓ and 5.8㎓ using finite-difference time-domain method(FDTD). Cross Patch fed by aperture in the ground plane of microstrip line is proposed as radiation element of antenna, which is 2 rectangular Patch is overlapped. To design antenna, change of input impedance by aperture and stub length change is examined. And it is investigated that center frequency and -10 ㏈ bandwidth by Length of radiation element and width change. Experimental result about reflection Loss confirmed that agree well with analysis results of FDTD and IE3D, And -3 ㏈ beam width, front to back ratio and gain in frequency 2.43㎓ and 5.79㎓ is presented by measuring radiation Pattern of antenna.

  • PDF

Compact Size Wideband Microstrip Antenna Element for Repeater and Base Stations at 2 GHz

  • Choi, Young-Min;Lee, Bom-son
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • A compact size microstrip antenna element using FR-4 substrate is proposed for use in repeater and base stations. Two stacked patches are aperture-coupled by two split feedlines. Rectangular stubs on the split feedlines are laid under the aperture and have the effect of considerably lowing the magnitude of $S_{11}$ [dB] and broadening impedance bandwidth. The designed structure has been fabricated and measured. Based on 20 dB, the return loss bandwidth is about 16.8% (1.86 GHz~2.20 GHz), which covers the frequency range assigned for IMT-2000 with a large margin. The overall dimension of the proposed antenna structure is 37 mm$\times$41 mm$\times$19mm (very compact). The antenna gain is more than 7.5 dBi over the required frequency range.

  • PDF