• Title/Summary/Keyword: Recovery rate of +Gz tolerance

Search Result 1, Processing Time 0.018 seconds

Factors Affecting the Recovery of Pilots +Gz Tolerance

  • Park, Myunghwan;Jee, Cheolkyu;Kim, Cheonyoung;Seol, Hyeonju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.535-543
    • /
    • 2017
  • Objective: This study was designed to identify factors affecting pilots' +Gz tolerance recovery from +Gz induced exhaustion. Background: +Gz tolerance of pilots has been considered as a crucial factor to fly the modern high performance fighter aircrafts. However, the factors affecting pilots' G-tolerance recovery from +Gz induced exhaustion have not been examined in the acceleration research community. Method: A centrifuge profile consisting of a high +Gz run for pilot's exhaustion and a low +Gz run for pilot's recovery and another high +Gz runs for pilot's second exhaustion was designed. The subjects' +Gz tolerance recovery ratio was measured by ratio of second high +Gz run time to the first high +Gz run time. The subjects' +Gz tolerance recovery rate was measured by dividing the subjects' +Gz tolerance recovery ratio by the low +Gz run time. The subjects' G-tolerance recovery rate was analyzed with respect to the subjects' personal factors including subjects' anthropometric and physiologic characteristics, flight time, flying aircraft type and so on. Results: The subjects' previous three-month flight hours (r=-0.336, p=0.039), six-month flight hours (r=-0.403, p=0.012) and one-year flight hours (r=-0.329, p= 0.044) correlated with the subjects' G-tolerance recovery rate. Conclusion: The subjects' G-tolerance recovery rate is clearly related to the subjects' previous flight hours. However, the subjects' anthropometric and physiologic characteristics do not show any statistically significant correlation with the subjects' G-tolerance recovery rate. Application: This research provides a safety critical insight to aviation community by identifying the factors to affect the gravity-induced loss of consciousness (GLOC) of pilots.