• Title/Summary/Keyword: Recorded error

Search Result 252, Processing Time 0.024 seconds

A Prospective Randomized Comparative Clinical Trial Comparing the Efficacy between Ondansetron and Metoclopramide for Prevention of Nausea and Vomiting in Patients Undergoing Fractionated Radiotherapy to the Abdominal Region (복부 방사선치료를 받는 환자에서 발생하는 오심 및 구토에 대한 온단세트론과 메토클로프라미드의 효과 : 제 3상 전향적 무작위 비교임상시험)

  • Park Hee Chul;Suh Chang Ok;Seong Jinsil;Cho Jae Ho;Lim John Jihoon;Park Won;Song Jae Seok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.127-135
    • /
    • 2001
  • Purpose : This study is a prospective randomized clinical trial comparing the efficacy and complication of anti-emetic drugs for prevention of nausea and vomiting after radiotherapy which has moderate emetogenic potential. The aim of this study was to investigate whether the anti-emetic efficacy of ondansetron $(Zofran^{\circledR})$ 8 mg bid dose (Group O) is better than the efficacy of metoclopramide 5 mg lid dose (Group M) in patients undergoing fractionated radiotherapy to the abdominal region. Materials and Methods : Study entry was restricted to those patients who met the following eligibility criteria: histologically confirmed malignant disease; no distant metastasis; performance status of not more than ECOG grade 2; no previous chemotherapy and radiotherapy. Between March 1997 and February 1998, 60 patients enrolled in this study. All patients signed a written statement of informed consent prior to enrollment. Blinding was maintained by dosing identical number of tablets including one dose of matching placebo for Group O. The extent of nausea, appetite loss, and the number of emetic episodes were recorded everyday using diary card. The mean score of nausea, appetite loss and the mean number of emetic episodes were obtained in a weekly interval. Results : Prescription error occurred in one patient. And diary cards have not returned in 3 patients due to premature refusal of treatment. Card from one patient was excluded from the analysis because she had a history of treatment for neurosis. As a result, the analysis consisted of 55 patients. Patient characteristics and radiotherapy characteristics were similar except mean age was $52.9{\pm}11.2$ in group M, $46.5{\pm}9.5$ in group O. The difference of age was statistically significant. The mean score of nausea, appetite loss and emetic episodes in a weekly interval was higher in group M than O. In group M, the symptoms were most significant at 5th week. In a panel data analysis using mixed procedure, treatment group was only significant factor detecting the difference of weekly score for all three symptoms. Ondansetron $(Zofran^{\circledR})$ 8 mg bid dose and metoclopramide 5 mg lid dose were well tolerated without significant side effects. There were no clinically important changes In vital signs or clinical laboratory parameters with either drug. Conclusion : Concerning the fact that patients with younger age have higher emetogenic potential, there are possibilities that age difference between two treatment groups lowered the statistical power of analysis. There were significant difference favoring ondansetron group with respect to the severity of nausea, vomiting and loss of appetite. We concluded that ondansetron is more effective anti-emetic agents in the control of radiotherapy-induced nausea, vomiting, loss of appetite without significant toxicity, compared with commonly used drug, i.e., metoclopramide. However, there were patients suffering emesis despite the administration of ondansetron. The possible strategies to improve the prevention and the treatment of radiotherapy-induced emesis must be further studied.

  • PDF

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.