• Title/Summary/Keyword: Reconstructed error compensator

Search Result 2, Processing Time 0.016 seconds

Backstepping Control-Based Precise Positioning Control Using Robust Friction State Observer and RFNN (강인한 마찰상태관측기와 RFNN을 이용한 백스테핑 제어기반 정밀 위치제어)

  • Yeo, Dae-Yeon;Han, Seong-Ik;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.394-401
    • /
    • 2010
  • In this article, we investigate a robust friction compensation scheme for the purpose of accomplishing precision positioning performance a servo mechanical system with nonlinear dynamic friction. To estimate the friction state and tackle robustness problem for uncertainty, a RFNN and reconstructed error compensator as well as a robust friction state observer are developed. The asymptotic stability of the series of friction compensation methodologies are verified from the Lyapunov's stability theory. Some simulations and experiments on a servo mechanical system were carried out to evaluate the effectiveness of the proposed control scheme.

Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer (구강암 환자 치료시 치과용 기초상 왁스(Paraffin Wax)의 유용성 평가)

  • Na, Kyoung-Su;Seo, Seuk-Jin;Lee, Je-Hee;Yoo, Sook-Heun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • Purpose: This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Materials and Methods: Each compensator was formed by $10{\times}10{\times}1cm$ and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Results: Radiation dose attenuation ratios were shown -0.7~+3.7% for Mouth Piece, +0.21~+0.39% for Paraffin Wax and -2.71~-1.76% for Putty impression. Error ranges of reproducibility of positions were measured ${\pm}3mm$ for Mouth Piece, ${\pm}2mm$ for Paraffin Wax and ${\pm}2mm$ mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Conclusion: Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other impressions and position reproducibility of it was remarkable as it was possible to make an anatomy reflected impression. It was also well fitted to oral cavity to transfer radiation dose planned in radiotherapy. Thus, Paraffin Wax will be an ideal material in radiotherapy for patients with oral cancer.

  • PDF