• Title/Summary/Keyword: Reconnaissance Robot

Search Result 33, Processing Time 0.026 seconds

Development and Verification of UAV-UGV Hybrid Robot System (드론-지상 하이브리드 로봇 시스템 개발 및 검증)

  • Jongwoon Woo;Jihoon Kim;Changhyun Sung;Byeongwoo Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.233-240
    • /
    • 2023
  • In this paper, we proposed a hybrid type robot that simultaneously surveillance and reconnaissance on the ground and in the air. It was possible to expand the surveillance and reconnaissance range by expanding the surveillance and reconnaissance area of the ground robot and quickly moving to the hidden area through the drone. First, ground robots go to mission areas through drones and perform surveillance and reconnaissance missions for urban warfare or mountainous areas. Second, drones move ground robots quickly. It transmits surveillance and reconnaissance images of ground robots to the control system and performs reconnaissance missions at the same time. Finally, in order to secure the interoperability of these hybrid robots, basic performance and environmental performance were verified. The evaluation method was tested and verified based on the KS standards.

A Study on M&S Environment for Designing the Autonomous Reconnaissance Ground Robot (자율탐색 로봇 설계를 위한 M&S(Modeling & Simulation) 환경 연구)

  • Kim, Jae-Soo;Son, Hyun-Seung;Kim, Woo-Yeol;Kim, R. Young-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.127-134
    • /
    • 2008
  • An autonomous reconnaissance ground robot performs its duty in various different environments such as mountain-scape, desert and under-water through changing its shape and form according to the environment it is working in. Making a prototype robot for each environment requires extra cost and time. It is also difficult to modify the problem after production. In this paper, we propose the adoption of M&S(Modeling & Simulation) environment for the production and design of the autonomous reconnaissance ground robot. The proposed method on the M&S environment contributed to the more effective and less time consuming production of the robot through the Pre-Modeling and Pre-Simulation process. For example, we showed the design and implementation of the autonomous reconnaissance ground robot under the proposed environment and tools.

Development of Jumping Mechanism for Small Reconnaissance Robot (소형 정찰 로봇의 도약 메커니즘 개발)

  • Tae, Won-Seok;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

Time-Efficient Trajectory Planning Algorithms for Multiple Mobile Robots in Nuclear/Chemical Reconnaissance System (화방 정찰 체계에서의 다수의 이동 로봇을 위한 시간 효율적인 경로 계획 알고리즘에 대한 연구)

  • Kim, Jae-Sung;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1047-1055
    • /
    • 2009
  • Since nuclear and chemical materials could damage people and disturb battlefield missions in a wide region, nuclear/chemical reconnaissance systems utilizing multiple mobile robots are highly desirable for rapid and safe reconnaissance. In this paper, we design a nuclear/chemical reconnaissance system including mobile robots. Also we propose time-efficient trajectory planning algorithms using grid coverage and contour finding methods for reconnaissance operation. For grid coverage, we performed in analysis on time consumption for various trajectory patterns generated by straight lines and arcs. We proposed BCF (Bounded Contour Finding) and BCFEP (Bounded Contour Finding with Ellipse Prediction) algorithms for contour finding. With these grid coverage and contour finding algorithms, we suggest trajectory planning algorithms for single, two or four mobile robots. Various simulations reveal that the proposed algorithms improve time-efficiency in nuclear/chemical reconnaissance missions in the given area. Also we conduct basic experiments using a commercial mobile robot and verify the time efficiency of the proposed contour finding algorithms.

Modular Type Robot for Field Moving and Tree Climbing (야지 구동과 나무 등반을 위한 모듈형 로봇의 개발)

  • Lee, Min-Gu;Yoo, Sang-Jun;Park, Jong-Won;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.118-125
    • /
    • 2012
  • Based on recent advances in technology, many robots are developed and they are used in a hazardous environment such as military operation, fire, and building collapse and so on. Among them, reconnaissance robot should be able to perform various missions which people can not do. So it needs the capability of moving with hiding its position on rough terrain, overcoming obstacles, and guaranteeing its efficiency of reconnaissance. For this reason there are in progress of researching biomimetic robots. Therefore in this paper we proposed robot mechanism, two modules based on the screw and wheel mechanism which mimic snake, and the spiral climbing method was considered for overcoming the situation when moving on the trees.

Protector Design and Shock Analysis for a Launch-Reconnaissance Robot (발사형 정찰로봇을 위한 보호체 설계 및 충격해석)

  • Kang, Bong-Soo;Park, Moon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.971-976
    • /
    • 2011
  • This paper presents the design concepts of a protector for a launch-reconnaissance robot that is to be deployed for data-collection in hazardous regions. The protector protects the reconnaissance robot inside from shock induced during the process of launch, flight, and landing. Since the outer shells of the protector are automatically opened wide by the unlocking mechanism during the landing stage, the reconnaissance robot can easily exit the protector and move around to carry out its mission. We carefully simulated a finite-element model of the protector with the robot and compared the results with the actual dynamic behavior of the system. Shock- response tests using a droptable showed that the proposed protector filled with silicon material successfully attenuated external shock.

The Development of Small-sized Launchable Robot for Reconnaissance (발사형 소형정찰 로봇 개발)

  • Lee, Seung-Ho;Jung, Won-Suk;Lee, Min-Gu;Park, Ji-Hyuk;Park, Hyun-Soo;Yoo, Kyu-Jae;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Recently, the study on small-sized reconnaissance robot has been progressed through grafting robot technology to military fields for minimizing the casualties. Especially, throwable robots have been focusing for their's efficiency in anti-terror operation. However, it is impossible to launch throwable robot to long range(approximately 100m) by hand. So we need another type of robots, so called launchable robots, which can launch farther and is more accurate by launcher. In this paper, we presented the process of developments of launchable robots('launchbot') which are available for remote launch from collection of user's opinions to field test. Based on the opinions of users, we established the goal of development, designed and manufactured the robots. Through the field test, we found that our launchable robot satisfied the performance requirements.

Design of Fusion Platform Robot for Ground and Aerial Reconnaissance (항공 및 지상 동시 정찰이 가능한 융합형 정찰로봇 설계)

  • Jang, Dong-Hwi;Ko, Hyun-Jun;Kim, Jong-Hyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.718-723
    • /
    • 2015
  • This paper describes the conceptual platform design of a dual-capable robot for both driving on the ground and flying in the air. The dual-capable robot can move over all types of terrain for both ground and aerial reconnaissance. The main design problem of the robot is how to make a wheel for both driving and flying. The proposed key design concept is a hubless driving wheel that contains a propeller inside for flying in the air. The primary design parameters and initial specifications were confirmed through an examination of the conceptual design, and functional tests were then conducted using a real prototype robot for driving and flying modes. The test results show the feasibility of the proposed design concept.

Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs (다층 실내 환경에서 계단 극복이 가능한 궤도형 로봇의 신뢰성 있는 자율 주행 정찰 시스템)

  • Juhyeong Roh;Boseong Kim;Dokyeong Kim;Jihyeok Kim;D. Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • This paper presents a robust autonomous navigation and reconnaissance system for tracked robots, designed to handle complex multi-floor indoor environments with stairs. We introduce a localization algorithm that adjusts scan matching parameters to robustly estimate positions and create maps in environments with scarce features, such as narrow rooms and staircases. Our system also features a path planning algorithm that calculates distance costs from surrounding obstacles, integrated with a specialized PID controller tuned to the robot's differential kinematics for collision-free navigation in confined spaces. The perception module leverages multi-image fusion and camera-LiDAR fusion to accurately detect and map the 3D positions of objects around the robot in real time. Through practical tests in real settings, we have verified that our system performs reliably. Based on this reliability, we expect that our research team's autonomous reconnaissance system will be practically utilized in actual disaster situations and environments that are difficult for humans to access, thereby making a significant contribution.