• 제목/요약/키워드: Recommender

검색결과 527건 처리시간 0.028초

아파치 스파크에서의 PARAFAC 분해 기반 텐서 재구성을 이용한 추천 시스템 (PARAFAC Tensor Reconstruction for Recommender System based on Apache Spark)

  • 임어진;용환승
    • 한국멀티미디어학회논문지
    • /
    • 제22권4호
    • /
    • pp.443-454
    • /
    • 2019
  • In recent years, there has been active research on a recommender system that considers three or more inputs in addition to users and goods, making it a multi-dimensional array, also known as a tensor. The main issue with using tensor is that there are a lot of missing values, making it sparse. In order to solve this, the tensor can be shrunk using the tensor decomposition algorithm into a lower dimensional array called a factor matrix. Then, the tensor is reconstructed by calculating factor matrices to fill original empty cells with predicted values. This is called tensor reconstruction. In this paper, we propose a user-based Top-K recommender system by normalized PARAFAC tensor reconstruction. This method involves factorization of a tensor into factor matrices and reconstructs the tensor again. Before decomposition, the original tensor is normalized based on each dimension to reduce overfitting. Using the real world dataset, this paper shows the processing of a large amount of data and implements a recommender system based on Apache Spark. In addition, this study has confirmed that the recommender performance is improved through normalization of the tensor.

오토인코더를 이용한 딥러닝 기반 추천시스템 모형의 비교 연구 (Comparison of deep learning-based autoencoders for recommender systems)

  • 이효진;정윤서
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.329-345
    • /
    • 2021
  • 추천 시스템은 고객의 데이터를 이용하여 개인 맞춤화된 상품을 추천한다. 추천 시스템은 협업 필터링, 콘텐츠 기반 필터링 그리고 이 두 가지를 합친 하이브리드 방법의 세 가지로 크게 나누어진다. 이 연구에서는 딥러닝 방법론에 기초한 오토인코더를 이용한 추천 시스템에 대한 소개와 그 모형들의 비교 연구를 진행한다. 오토인코더는 데이터 행렬에 0이 많은 경우의 문제를 효과적으로 다룰 수 있는 딥러닝 기반의 비지도학습 모형이다. 이 연구에서는 세 개의 실제 데이터를 이용하여 다섯 가지 종류의 오토인코더 기반 모형들을 비교한다. 처음의 세 개 모형은 협업 필터링에 속한 모형이고 나머지 두 개의 모형은 하이브리드 모형이다. 실제 데이터는 고객의 평점 데이터이고, 대부분의 평점이 없어서 희박성 비율이 높다는 특징이 있다.

개인화 추천시스템의 사용자 평가에 대한 통합적 접근 : 시스템 성과와 사용자 태도를 기반으로 (An Integrated Perspective of User Evaluating Personalized Recommender Systems : Performance-Driven or User-Centric)

  • 최재원;이홍주
    • 한국전자거래학회지
    • /
    • 제17권3호
    • /
    • pp.85-103
    • /
    • 2012
  • 온라인에서 추천시스템은 사용자들의 구매 이력 또는 선호도를 바탕으로 적절한 콘텐츠 또는 서비스를 제공하는 IT기술이다. 추천시스템에 대한 사용자의 평가에는 추천 결과에 기반한 시스템 성과와 추천 방식에 의해 형성되는 사용자의 태도에 대한 두 측면 모두 고려되어야 한다. 그러나 시스템 성과와 사용자 태도에 대한 통합적 관점의 추천시스템 평가에 대한 연구는 많지 않았다. 본 연구의 목적은 추천시스템에 대한 사용자 평가의 통합적 관점을 제시하는 것에 있다. 그에 따라 사용자 태도 형성과 관련하여 자기 참조(Self-reference)와 사회적 실재감(Social Presence)의 정도를 구분하여 웹 기반 실험을 수행하였으며 추천시스템의 성과 측정을 위하여 추천 알고리즘 평가에 널리 활용되어 온 정확성(Accuracy)과 새로움(Novelty)을 활용하였다. 연구의 결과로 추천시스템의 사용자 만족에 미치는 변수로 정확성과 새로움이 시스템 특성 요소로 제시되었으며 사용자 태도 관점에서 사회적 실재감이 사용자의 만족에 영향을 주었다.

사례기반 추론을 이용한 인터넷 서점의 서적 추천시스템 개발 (Development of a Book Recommender System for Internet Bookstore using Case-based Reasoning)

  • 이재식;명훈식
    • 한국전자거래학회지
    • /
    • 제13권4호
    • /
    • pp.173-191
    • /
    • 2008
  • 오늘날 인터넷의 전반적인 보급 및 전자상거래의 확산으로 인하여 정보의 홍수를 이루게 되었고, 고객들은 자신이 원하는 제품이나 서비스를 선택하기 위해서 정보를 탐색하는 작업이 더욱 어려워지게 되었다. 이러한 고객들에게 좀 더 편리하게 자신이 원하는 제품이나 서비스를 선택하도록 도와주는 것이 추천 시스템으로서, 고객 관계 관리의 중요한 부분으로 자리 잡게 되었다. 본 연구에서는, 인터넷 서점을 이용하는 고객에게 그가 관심을 가질만한 서적을 추천하여 줌으로써 구입할 서적의 선택을 도와주는 서적 추천 시스템을 개발하였다. 기존의 서적 추천 시스템 개발에 협업 필터링 기법이 주로 활용되어 왔다. 하지만 협업 필터링 기법을 적용하기 위해서는 각 서적에 대한 구매자들의 평가치가 수집되어야 하는데, 이러한 평가치들은 시스템 개발 이전에 오랜 기간에 걸쳐 정교한 계획 하에서 수집되어야 한다. 더욱이 구매자들이 평가치 제공에 협조하지 않을 경우에는 추천 시스템 자체의 작동이 불가능하게 된다. 그러므로 본 연구에서는 고객들의 구매기록만으로 서적 추천을 수행할 수 있도록 사례기반추론 기법을 활용하여 시스템을 개발 하였는데, 서적의 소분류 코드를 예측하는 상황에서 약 40% 수준의 적중률을 보였다.

  • PDF

음악추천시스템의 수용성에 개인감정과 상황이 미치는 영향 (Impact of Sentimental and Contextual Factors on the Acceptance of Music Recommender Systems)

  • 박경수;문남미
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.104-116
    • /
    • 2011
  • 추천시스템은 정보기술의 발달에 따른 정보의 홍수 속에서 사용자의 요구 사항과 선호를 바탕으로 사용자와 공급자 양측의 이익을 위해 사용자가 합당한 제품을 선택하기 위한 개인화된 의사결정 지원수단이라고 할 수 있다. 지금까지의 추천시스템에 관한 연구가 주로 공급자의 입장에서 추천시스템의 개선에 관한 연구들이거나 추천시스템 평가에 관한 연구가 대부분이어서 본 논문에서는 수요자의 입장에서 개인감정과 상황이 음악추천시스템의 수용성에 미치는 영향을 분석하기 위해 수정된 TAM을 기반으로 하여 관련 선행연구를 통해 검증된 변수를 기반으로 도출된 잠재변수와 측정치를 바탕으로 연구모형을 설정하고 이를 측정하기 위해 설문조사를 실시하여 다층구조 (High-Order Construct) 구조방정식모형을 통해 이를 분석하였다. 연구결과 개인감정 중에서 내적흥미와 즐거움은 유의한 영향을 미치는 것으로 나타났지만 자기효능감은 유의한 영향을 미치지 못하는 것으로 나타났고 개인상황에 있어서는 사회적영향과 시간적합성은 유의한영향을 미치는 것으로 나타났지만 장소적합성은 유의한 영향을 미치지 못하는 것으로 나타났다.

시빌 유형을 고려한 견고한 추천시스템 (STA : Sybil Type-aware Robust Recommender System)

  • 노태완;오하영;노기섭;김종권
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권10호
    • /
    • pp.670-679
    • /
    • 2015
  • 최근 인터넷의 급 성장과 함께 사용자들은 물건이나 영화, 음악 등을 구매 할 때 여러 가지 추천 사이트를 활용한다. 하지만 이러한 추천 사이트에는 악의적으로 아이템의 평점을 높이거나 낮추려는 악의적인 사용자(Sybil)들이 존재할 수 있으며, 추천시스템에 영향을 끼쳐 일반 사용자들에게 부정확한 결과를 추천할 수 있다. 본 논문에서는 사용자들이 생성하는 평점들을 일반적인 평점과 일반적이지 않은 평점으로 구분하고, 상태 정보를 재정립 및 활용하여 악의적 사용자의 영향력을 최소화 하는 추천 알고리즘을 제안한다. 특히, 현재 추천시스템에서의 문제가 되고 있는 3가지 공격모델의 개별 특성을 고려하여 시빌 유형에 견고한 추천 시스템을 처음으로 제안한다. 제안하는 기법의 성능을 입증하기 위해 실제 데이터를 직접 수집(crawling)하여 성능분석결과 제안하는 기법의 성능이 기존 알고리즘과는 다르게 공격 크기 및 종류에 상관 없이 좋은 성능을 보이는 것을 확인 하였다.

익스플리싯 피드백 환경에서 추천 시스템을 위한 최신 지식증류기법들에 대한 성능 및 정확도 평가 (State-of-the-Art Knowledge Distillation for Recommender Systems in Explicit Feedback Settings: Methods and Evaluation)

  • 배홍균;김지연;김상욱
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.89-94
    • /
    • 2023
  • 추천 시스템은 사용자가 아이템에 남긴 익스플리싯 또는 임플리싯 피드백을 바탕으로 각 사용자가 선호할 법한 아이템들을 추천하는 기술이다. 최근, 추천 시스템에 사용되는 딥 러닝 기반 모델의 사이즈가 커짐에 따라, 높은 추천 정확도를 유지하며 추론 시간은 줄이기 위한 목적의 연구가 활발히 진행되고 있다. 대표적으로 지식증류기법을 이용한 추천 시스템에 관한 연구가 있으며, 지식증류기법이란 큰 사이즈의 모델(즉, 교사)로부터 추출된 지식을 통해 작은 사이즈의 모델(즉, 학생)을 학습시킨 뒤, 학습이 끝난 작은 사이즈의 모델을 추천 모델로서 이용하는 방법이다. 추천 시스템을 위한 지식증류기법들에 관한 기존의 연구들은 주로 임플리싯 피드백 환경만을 대상으로 수행되어 왔었으며, 본 논문에서 우리는 이들을 익스플리싯 피드백 환경에 적용할 경우의 성능 및 정확도를 관찰하고자 한다. 실험을 위해 우리는 총 5개의 최신 지식증류기법들과 3개의 실세계 데이터셋을 사용하였다.

스마트 전시환경에서 부스 추천시스템의 사용자 의도에 관한 조사연구 (Analyzing the User Intention of Booth Recommender System in Smart Exhibition Environment)

  • 최재호;상균영;문현실;최일영;김재경
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.153-169
    • /
    • 2012
  • 전시회는 새로운 상품이나 서비스를 현재 고객들과 미래의 잠재고객들에게 홍보하기 위해 개최하는 효과적인 마케팅 수단으로 중요하다. 기업들은 전시회에 참여를 통해 현재 고객 및 잠재고객들과 대면접촉을 함으로써 기업의 이미지 제고 및 새로운 판로를 확보할 수 있다. 이처럼 전시회의 경제적 중요성이 커짐에 따라, 전시주최자들은 참여기업 및 참관객을 유치하기 위하여 새로운 IT 기술을 전시회에 적용하고 있을 뿐만 아니라 연구자들 또한 참관객의 관람패턴을 분석하기 위하여 다양한 연구를 시도하고 있다. 최근에는 스마트 기술이 발전함으로써 전시 공간 내에서 참관객의 활동을 실시간으로 모니터링 할 수 있어 온라인 전시환경처럼 오프라인 전시회를 방문한 참관객의니즈를 실시간으로 추론하여 참관객의 선호에 적합한 서비스를 제공하기 위한 부스 추천시스템에 대한 연구가 활발히 진행되고 있다. 그러나 새로운 기술 개발 측면에서 시스템의 성능을 개선하려는 연구는 지속적으로 진행되어 왔으나 향후 시스템의 개발 방향 및 보급 활성화에 영향을 미치는 요인에 관한 연구들이 부족한 실정이다. 부스 추천시스템은 스마트 전시환경에서 새로 도입되는 기술로 부스 추천시스템에 대한 참관객의 수용 후 재사용 의도는 TAM 관점보다는 부스 추천시스템이 참관객의 선호에 적합한 추천정보를 제공하는가에 초점을 맞출 필요가 있다. 따라서, 본 연구에서는 기존 문헌 고찰을 통해 전시환경에서의 부스 추천시스템에 대한 참관객의 만족 및 재사용 의도에 영향을 주는 요인을 도출하여 연구모형을 설계하였다. 이를 통해 향후 스마트 전시환경에서 부스 추천시스템의 개발과 보급 전략에 있어 유용한 시사점을 제공하고자 하였다. 이러한 연구목적을 달성하기 위하여 2011년 11월 DMC 컬처 오픈 행사에서 부스 추천시스템을 사용한 참관객을 대상으로 설문조사를 실시하였고 회귀분석을 통해 가설을 검증하였다. 그 결과, 참관객의 만족에 영향을 미치는 요인은 부스 추천시스템의 효과성, 편의성, 추천품질, 의외성으로 나타났다. 또한, 부스 추천시스템에 대한 참관객의 만족은 재사용 의도 형성에 긍정적인 영향을 미치는 것으로 밝혀졌다. 본 연구가 가지는 의의는 다음과 같다. 먼저, 본 연구결과를 토대로 스마트 전시환경에서 부스 추천시스템에 대한 참관객의 지속적인 서비스 이용을 유도하기 위한 전략을 수립할 때 고려해야 할 주요한 요인을 실증연구를 통해 구체화시켰다는데 의의가 있다. 또한, 스마트 전시환경에서 부스 추천시스템이 성공적으로 도입 및 활용되기 위해서는 참관객의 수용 전후 차별화된 관리가 필요함을 본 연구결과를 통해 제시하였다.

음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구 (A Study about The Impact of Music Recommender Systems on Online Digital Music Rankings)

  • 김현모;김민용;박재홍
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.49-68
    • /
    • 2014
  • 대다수의 국내외 온라인 디지털 음원 유통 사이트들은 음원 판매 활성화 방책의 일환으로 음원 추천시스템을 가지고 있다. 국외의 경우와 다르게, 우리나라의 시장점유율이 가장 높은 온라인 디지털음원 유통 사이트 5곳은 독자적인 기준으로 추천 음원을 선정하고 있으며, 추전 음원의 선정 기준 및 절차를 소비자에게 공개하고 있지 않다. 본 연구는 국내 온라인 디지털 음원 유통 사이트가 보유한 음원 추천시스템의 공정성 여부를 확인하고, 이러한 음원 추천시스템으로부터 선정된 추천 음원이 음원차트에서 어떠한 영향력을 갖는지 확인하는 것을 목적으로 한다. 2012년 11월부터 약 한달 간 온라인 디지털 음원 유통 사이트의 일간 음원차트에 등록되어 있는 1위부터 100위까지의 음원과 추천 음원을 수집하였다. 먼저, 수집된 음원 데이터를 기반으로 음원 추천시스템의 공정성 여부를 실증적인 방법으로 확인하였다. 첫째, 추천 음원의 노출 위치를 분석하였으며 둘째, 추천 음원이 제공되는 서비스 구조를 확인하였다. 셋째, 기획사에 따른 추천 음원 분포를 확인하였다. 더 나아가 이러한 음원 추천시스템으로부터 선정된 추천 음원이 음원차트 내에서 어떠한 영향력을 갖는지 실증적인 분석 방법으로 확인 하였다. 첫째, 음원차트의 동일 비동일 진입 시기에 따라 추천 음원과 미추천 음원의 순위 변화를 비교 분석하였다. 둘째, 모든 사이트에서 동시에 중복 추천된 음원과 단일 추천된 음원의 순위 변화를 비교 분석하였다. 셋째, 추천 받은 음원이 음원차트에 처음으로 진입하는 시기 및 순위를 확인하였다. 넷째, 음원차트 상위권 순위에 분포되어 있는 추천 음원의 비율을 확인하였다. 본 연구는 국내 온라인 디지털 음원 유통 사이트가 보유한 음원 추천시스템의 현행 및 현상에 대해 실증적으로 분석하여 공정성 문제를 제기하였으며, 음원 추천시스템이 음원차트에 미치는 파급력을 확인하였다는 것에 학술적 의의를 가진다. 또한 온라인 디지털 음원 유통 사이트의 내 외부 이해관계자에게 음원 추천시스템 악용에 대한 경각심을 고취시켜 음원차트의 공정성을 확보하고자하는 것에 산업적 의의를 가진다.