• Title/Summary/Keyword: Recommendation model

Search Result 697, Processing Time 0.021 seconds

The Role of Online Social Recommendation and Similarity of Preferences: In Two Stage Purchase Decision Making Process (온라인 추천정보와 선호 유사성의 역할: 2단계 구매 의사 결정 모델을 중심으로)

  • Lee, Jae-Young;Ko, Hye-Min
    • Knowledge Management Research
    • /
    • v.16 no.3
    • /
    • pp.149-169
    • /
    • 2015
  • In this study, we try to understand the role of online social recommendation and the similarity of preferences between the recommender and the recommendee on consumer decisions in the framework of the two stage purchase decision-making process. Applying construal level theory to our context, we expect that the role of social recommendation and the similarity of preferences would vary over the stages in the two-stage decision making process. To test our hypotheses, we collected the data through an incentive compatible experiment, and analyzed the data with nested logit model. As a result, we found that the role of online social recommendation varies over the stages. Consumers take recommendation from similar others at the stage of consideration set formation, but no longer consider it at the stage of final choice. Consumers take recommendation from dissimilar others at the stage of consideration set formation. At the stage of final choice, however, consumers avoid choosing the option recommended by dissimilar others. The results of our study enrich the understanding about the role of social recommendation, and have implication to marketing practitioners who attempt to make online social recommendation system more efficient.

Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance

  • Hyung Su Kim;Sangwon Lee
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.752-770
    • /
    • 2019
  • The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.

Temporal Interval Refinement for Point-of-Interest Recommendation (장소 추천을 위한 방문 간격 보정)

  • Kim, Minseok;Lee, Jae-Gil
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.86-98
    • /
    • 2018
  • Point-of-Interest(POI) recommendation systems suggest the most interesting POIs to users considering the current location and time. With the rapid development of smartphones, internet-of-things, and location-based social networks, it has become feasible to accumulate huge amounts of user POI visits. Therefore, instant recommendation of interesting POIs at a given time is being widely recognized as important. To increase the performance of POI recommendation systems, several studies extracting users' POI sequential preference from POI check-in data, which is intended for implicit feedback, have been suggested. However, when constructing a model utilizing sequential preference, the model encounters possibility of data distortion because of a low number of observed check-ins which is attributed to intensified data sparsity. This paper suggests refinement of temporal intervals based on data confidence. When building a POI recommendation system using temporal intervals to model the POI sequential preference of users, our methodology reduces potential data distortion in the dataset and thus increases the performance of the recommendation system. We verify our model's effectiveness through the evaluation with the Foursquare and Gowalla dataset.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

Affection-enhanced Personalized Question Recommendation in Online Learning

  • Mingzi Chen;Xin Wei;Xuguang Zhang;Lei Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3266-3285
    • /
    • 2023
  • With the popularity of online learning, intelligent tutoring systems are starting to become mainstream for assisting online question practice. Surrounded by abundant learning resources, some students struggle to select the proper questions. Personalized question recommendation is crucial for supporting students in choosing the proper questions to improve their learning performance. However, traditional question recommendation methods (i.e., collaborative filtering (CF) and cognitive diagnosis model (CDM)) cannot meet students' needs well. The CDM-based question recommendation ignores students' requirements and similarities, resulting in inaccuracies in the recommendation. Even CF examines student similarities, it disregards their knowledge proficiency and struggles when generating questions of appropriate difficulty. To solve these issues, we first design an enhanced cognitive diagnosis process that integrates students' affection into traditional CDM by employing the non-compensatory bidimensional item response model (NCB-IRM) to enhance the representation of individual personality. Subsequently, we propose an affection-enhanced personalized question recommendation (AE-PQR) method for online learning. It introduces NCB-IRM to CF, considering both individual and common characteristics of students' responses to maintain rationality and accuracy for personalized question recommendation. Experimental results show that our proposed method improves the accuracy of diagnosed student cognition and the appropriateness of recommended questions.

Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering (선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템)

  • Shin, Taeksoo;Chang, Kun-Nyeong;Park, Youjin
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.1-14
    • /
    • 2006
  • This study proposed a customer preference estimation model for production recommendation and a method to enhance the performance of product recommendation using the estimated customer preference information. That is, we suggested customer preference estimation model to estimate exactly customer's product preference with his behavior. This model shows the relationship of customer's behaviors with his preferences. The proposed estimation model is optimized by learning the relative weights of customer's behavior variables to have an effect on his preference and enables to estimate exactly his preference. To validate our proposed models, we collected virtual book store data and then made a comparative analysis of our proposed models and a benchmark model in terms of performance results of collaborative filtering for product recommendation. The benchmark model means a prior preference weighting model. The results of our empirical analysis showed that our proposed model performed better results than the benchmark model.

  • PDF

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.