• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.024 seconds

Design of Vehicle Inspection Recommendation System (자동차 점검 추천 시스템 설계)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.213-218
    • /
    • 2013
  • In this paper, when vehicle inspection is made, the check way is recommended based on the intelligent and personalized in the workplace, education, and other space-time according to the current situation. These results increase productivity, reduce costs, and improve performance. So we designed vehicle inspection recommendation system using ontology. Recommendation method is that components connected concept are shown according to weight value. if components are connected with other concept, the components are extended.

Collaborative filtering based Context Information for Real-time Recommendation Service in Ubiquitous Computing

  • Lee Se-ll;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 2006
  • In pure P2P environment, it is possible to provide service by using a little real-time information without using accumulated information. But in case of using only a little information that was locally collected, quality of recommendation service can be fallen-off. Therefore, it is necessary to study a method to improve qualify of recommendation service by using users' context information. But because a great volume of users' context information can be recognized in a moment, there can be a scalability problem and there are limitations in supporting differentiated services according to fields and items. In this paper, we solved the scalability problem by clustering context information per each service field and classifying it per each user, using SOM. In addition, we could recommend proper services for users by quantifying the context information of the users belonging to the similar classification to the service requester among classified data and then using collaborative filtering.

A Mobile Web's Recommendation Technique based on XPDL (XPDL 기반 모바일웹 추천기법)

  • Kim, Chul-Jin;Choi, Kwang-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5856-5865
    • /
    • 2013
  • The demand for Mobile Web Services has increased to overcome the issue of Mobile Application's platform dependencies and device resource's limitations. The method to improve productivity of the development and operation of the Mobile Web Services is to provide a low-coupling between Mobile Webs. In this paper, we propose the Recommendation Technique of dynamic Mobile Web integration to reduce the coupling. The Mobile Web Recommendation Technique is proposed based on XPDL.

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-ju;Kwak, Min-jung;Han, In-goo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.105-110
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference. data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values.. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF

Combining Collaborative, Diversity and Content Based Filtering for Recommendation System

  • Shrestha, Jenu;Uddin, Mohammed Nazim;Jo, Geun-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.602-609
    • /
    • 2007
  • Combining collaborative filtering with some other technique is most common in hybrid recommender systems. As many recommended items from collaborative filtering seem to be similar with respect to content, the collaborative-content hybrid system suffers in terms of quality recommendation and recommending new items as well. To alleviate such problem, we have developed a novel method that uses a diversity metric to select the dissimilar items among the recommended items from collaborative filtering, which together with the input when fed into content space let us improve and include new items in the recommendation. We present experimental results on movielens dataset that shows how our approach performs better than simple content-based system and naive hybrid system

  • PDF

Improving the Product Recommendation System based-on Customer Interest for Online Shopping Using Deep Reinforcement Learning

  • Shahbazi, Zeinab;Byun, Yung-Cheol
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2021
  • In recent years, due to COVID-19, the process of shopping has become more restricted and difficult for customers. Based on this aspect, customers are more interested in online shopping to keep the Untact rules and stay safe, similarly ordering their product based on their need and interest with most straightforward and fastest ways. In this paper, the reinforcement learning technique is applied in the product recommendation system to improve the recommendation system quality for better and more related suggestions based on click patterns and users' profile information. The dataset used in this system was taken from an online shopping mall in Jeju island, South Korea. We have compared the proposed method with the recent state-of-the-art and research results, which show that reinforcement learning effectiveness is higher than other approaches.

A Study On User Skin Color-Based Foundation Color Recommendation Method Using Deep Learning (딥러닝을 이용한 사용자 피부색 기반 파운데이션 색상 추천 기법 연구)

  • Jeong, Minuk;Kim, Hyeonji;Gwak, Chaewon;Oh, Yoosoo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1367-1374
    • /
    • 2022
  • In this paper, we propose an automatic cosmetic foundation recommendation system that suggests a good foundation product based on the user's skin color. The proposed system receives and preprocesses user images and detects skin color with OpenCV and machine learning algorithms. The system then compares the performance of the training model using XGBoost, Gradient Boost, Random Forest, and Adaptive Boost (AdaBoost), based on 550 datasets collected as essential bestsellers in the United States. Based on the comparison results, this paper implements a recommendation system using the highest performing machine learning model. As a result of the experiment, our system can effectively recommend a suitable skin color foundation. Thus, our system model is 98% accurate. Furthermore, our system can reduce the selection trials of foundations against the user's skin color. It can also save time in selecting foundations.

Clothing-Recommendation system based on emotion and weather information (감정과 날씨 정보에 따른 의상 추천 시스템)

  • Ugli, Sadriddinov Ilkhomjon Rovshan;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.528-531
    • /
    • 2021
  • Nowadays recommendation systems are so ubiquitous, where our many decisions are being done by the means of them. We can see recommendation systems in all areas of our daily life. Therefore the research of this sphere is still so active. So far many research papers were published for clothing recommendations as well. In this paper, we propose the clothing-recommendation system according to user emotion and weather information. We used social media to analyze users' 6 basic emotions according to Paul Eckman theory and match the colour of clothing. Moreover, getting weather information using visualcrossing.com API to predict the kind of clothing. For sentiment analysis, we used Emotion Lexicon that was created by using Mechanical Turk. And matching the emotion and colour was done by applying Hayashi's Quantification Method III.

Personalized Information Delivery Methods for Knowledge Portals (지식포탈을 위한 개인화 지식 제공 방안)

  • Lee Hong Joo;Kim Jong Woo;Kim Gwang Rae;Ahn Hyung Jun;Kwon Chul Hyun;Park Sung Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.45-57
    • /
    • 2005
  • In order to provide personalized knowledge recommendation services, most web portals for organizational knowledge management use category or keyword information that portal users explicitly express interests in. However, it is usually difficult to collect correct preference data for all users with this approach, and, moreover, users' preferences may easily change over time, which results In outdated user profiles and impaired recommendation qualify. In order to address this problem, this paper suggests knowledge recommendation methods for portals using user profiles that are automatically constructed from users' activities such as posting or uploading of articles and documents. The result of our experiment shows that the Proposed method can provide equivalent performance with the manual category or keyword selection method.

  • PDF

How to improve the diversity on collaborative filtering using tags

  • Joo, Jin-Hyeon;Park, Geun-Duk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.11-17
    • /
    • 2018
  • In this paper, we propose how to improve the lack of diversity in collaborative filtering, using tag scores contained in items rather than ratings of items. Collaborative filtering has excellent performance among recommendation system, but it is evaluated as lacking diversity. In order to solve this problem, this paper proposes a method for supplementing diversity lacking in collaborative filtering by using tags. By using tags that can be used universally without using the characteristics of specific articles in a recommendation system, The proposed method can be used.