• Title/Summary/Keyword: Recombination lifetime

Search Result 72, Processing Time 0.015 seconds

A Study on the Improvement of Forward Blocking Characteristics in the Static Induction Transistor (Static Induction Transistor의 순방향 블로킹 특성 개선에 관한 연구)

  • Kim, Je-Yoon;Jung, Min-Chul;Yoon, Jee-Young;Kim, Sang-Sik;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.292-295
    • /
    • 2004
  • The SIT was introduced by Nishizawa. in 1972. When compared with high-voltage, power bipolar junction transistors, SITs have several advantages as power switching devices. They have a higher input impedance than do bipolar transistors and a negative temperature coefficient for the drain current that prevents thermal runaway, thus allowing the coupling of many devices in parallel to increase the current handling capability. Furthermore, the SIT is majority carrier device with a higher inherent switching speed because of the absence of minority carrier recombination, which limits the speed of bipolar transistors. This also eliminates the stringent lifetime control requirements that are essential during the fabrication of high-speed bipolar transistors. This results in a much larger safe operating area(SOA) in comparison to bipolar transistors. In this paper, vertical SIT structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. A trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. The proposed devices have superior electrical characteristics when compared to conventional device. Consequently, the fabrication of trench oxide power SIT with superior stability and electrical characteristics is simplified.

  • PDF

Electrochemical Characterization of Fluorine Doped TiO2 Dye-Sensitized Solar Cells (불소 도핑 TiO2 염료감응형 태양전지의 전기화학적 특성)

  • Lee, Sung Kyu;Im, Ji Sun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.461-466
    • /
    • 2011
  • In this study, the fluorine doped $TiO_2$ was prepared as a photoelectrode in order to improve the efficiency of dye-sensitized solar cells and estimated the electrochemical characterizations. The energy conversion efficiency of the prepared dye-sensitized solar cells using fluorine doped $TiO_2$ was calculated from a current-voltage curve. The efficiency of prepared dye-sensitized solar cells was improved by about maximum three times by F-doping on $TiO_2$. It was suggested that the efficiency of dye-sensitized solar cells was improved by hybrid semiconductors of $TiO_2/TiOF_2$ in photoelectrode based on reduced $TiOF_2$ energy level via fluorine doping. It can be confirmed that the electron transport was faster but the electron recombination was slower by doping fluorine on $TiO_2$ in photoelectrode through intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy analysis.