• 제목/요약/키워드: Recombination Loss

검색결과 54건 처리시간 0.028초

Simulation Study of Front-Lit Versus Back-Lit Si Solar Cells

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제28권1호
    • /
    • pp.38-42
    • /
    • 2018
  • Continuous efforts are being made to improve the efficiency of Si solar cells, which is the prevailing technology at this time. As opposed to the standard front-lit solar cell design, the back-lit design suffers no shading loss because all the metal electrodes are placed on one side close to the pn junction, which is referred to as the front side, and the incoming light enters the denuded back side. In this study, a systematic comparison between the two designs was conducted by means of computer simulation. Medici, a two-dimensional semiconductor device simulation tool, was utilized for this purpose. The $0.6{\mu}m$ wavelength, the peak value for the AM-1.5 illumination, was chosen for the incident photons, and the minority-carrier recombination lifetime (${\tau}$), a key indicator of the Si substrate quality, was the main variable in the simulation on a p-type $150{\mu}m$ thick Si substrate. Qualitatively, minority-carrier recombination affected the short circuit current (Isc) but not the opencircuit voltage (Voc). The latter was most affected by series resistance associated with the electrode locations. Quantitatively, when ${\tau}{\leq}500{\mu}s$, the simulation yielded the solar cell power outputs of $20.7mW{\cdot}cm^{-2}$ and $18.6mW{\cdot}cm^{-2}$, respectively, for the front-lit and back-lit cells, a reasonable 10 % difference. However, when ${\tau}$ < $500{\mu}s$, the difference was 20 % or more, making the back-lit design less than competitive. We concluded that the back-lit design, despite its inherent benefits, is not suitable for a broad range of Si solar cells but may only be applicable in the high-end cells where float-zone (FZ) or magnetic Czochralski (MCZ) Si crystals of the highest quality are used as the substrate.

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

식물의 감수분열에서 상동 재조합 효소 특이 기능의 연구현황 및 전망 (Current status and prospects of the meiosis-specific function of recombinase in plants)

  • 정유진;남기홍;김태성;이인혜;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제45권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Meiosis is a specialized cell division, essential in most reproducing organisms to halve the number of chromosomes, thereby enabling the restoration of ploidy levels during fertilization. A key step in meiosis is homologous recombination, which promotes homologous pairing and generates crossovers (COs) to connect homologous chromosomes until their separation at anaphase I. These CO sites, seen cytologically as chiasmata, represent a reciprocal exchange of genetic information between two homologous non-sister chromatids. RAD51, the eukaryotic homolog of the bacterial RecA recombinase, plays a central role in homologous recombination (HR) in yeast and animals. Loss of RAD51 function causes lethality in the flowering plant, Arabidopsis thaliana, suggesting that RAD51 has a meiotic stage-specific function that is different from homologous pairing activity.

Characterization of Morphology Controlled Fluorine-doped SnO2 Thin Films

  • An, Ha-Rim;An, Hye-Lan;Ahn, Hyo-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.453.1-453.1
    • /
    • 2014
  • Fluorine-doped tin oxide (FTO), which is commonly used in dye-sensitized solar cells (DSSCs), is a promising material of transparent conducting oxides (TCOs) because of advantages such as high chemical stability, high resistance, high optical transparency (>80% at 550nm), and low electrical resistivity (${\sim}10-4{\Omega}{\cdot}cm$). Especially, dye-sensitized solar cells (DSSCs) have been actively studied since Gratzel's research group required FTO substrate as a charge collector. When FTO substrates are used in DSSCs, photo-injected electrons may experience recombination at interface between dye-bonded semiconductor oxides ($TiO_2$) on FTO substrate and the electrolyte. To solve these problems, one is that because recombination at FTO substrate cannot be neglected, thin $TiO_2$ layer on FTO substrate as a blocking layer was introduced. The other is to control the morphology of surface on FTO substrate to reduce a loss of electrons. The structural, electrical, and optical characteristics of morphology controlled-FTO thin films as TCO materials were analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Hall Effect Measurement, and UV spectrophotometer. The performance of DSSCs fabricated with morphology controlled FTO substrates was performed using Power Conversion Efficiency (PCE). We will discuss these results in detail in Conference.

  • PDF

DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자 (PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER)

  • 오정환;이덕원;류동목
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권1호
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

Degradation Behavior of 850 nm AlGaAs/GaAs Oxide VCSELs Suffered from Electrostatic Discharge

  • Kim, Tae-Yong;Kim, Tae-Ki;Kim, Sang-In;Kim, Sang-Bae
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.833-843
    • /
    • 2008
  • The effect of forward and reverse electrostatic discharge (ESD) on the electro-optical characteristics of oxide vertical-cavity surface-emitting lasers is investigated using a human body model for the purpose of understanding degradation behavior. Forward ESD-induced degradation is complicated, showing three degradation phases depending on ESD voltage, while reverse ESD-induced degradation is relatively simple, exhibiting two phases of degradation divided by a sudden distinctive change in electro-optical characteristics. We demonstrate that the increase in the threshold current is mainly due to the increase in leakage current, nonradiative recombination current, and optical loss. The decrease in the slope efficiency is mainly due to the increase in optical loss.

  • PDF

An Investigation of the Effect of Schotky Barrier-Height Enhancement Layer on MSMPD Dynamic Characteristics

  • Seo, Jong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권2호
    • /
    • pp.141-146
    • /
    • 2002
  • The effect of the wide-bandgap Schottky barrier enhancement cap layer on the performance of metal-semiconductor-metal photodetectors (MSMPD's) is presented. Judged by the dc characteristics, no considerable increase in recombination loss of carriers is resulted by the incorporation of the cap layer. However, about 45% of the detection efficiency is lost for the cap-layered MSMPD's even with a graded layer incorporated under pulse operation, and it was found to be due mainly to the capturing and slow release of the photocarriers at the heterointerface. The loss mechanism of the pulse detection efficiency is believed to be responsible for the intersymbol interference and the increased bit-error-rate (BER) observed in MSMPD's when used with a high bit rate pseudo-random-bit-stream (PRBS) data pattern.

Study of the Efficiency Droop Phenomena in GaN based LEDs with Different Substrate

  • Yoo, Yang-Seok;Li, Song-Mei;Kim, Je-Hyung;Gong, Su-Hyun;Na, Jong-Ho;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.172-173
    • /
    • 2012
  • Currently GaN based LED is known to show high internal or external efficiency at low current range. However, this LED operation occurs at high current range and in this range, a significant performance degradation known as 'efficiency droop' occurs. Auger process, carrier leakage process, field effect due to lattice mismatch and thermal effects have been discussed as the causes of loss of efficiency, and these phenomena are major hindrance in LED performance. In order to investigate the main effects of efficiency loss and overcome such effects, it is essential to obtain relative proportion of measurements of internal quantum efficiency (IQE) and various radiative and nonradiative recombination processes. Also, it is very important to obtain radiative and non-radiative recombination times in LEDs. In this research, we measured the IQE of InGaN/GaN multiple quantum wells (MQWs) LEDs with PSS and Planar substrate using modified ABC equation, and investigated the physical mechanism behind by analyzing the emission energy, full-width half maximum (FWHM) of the emission spectra, and carrier recombination dynamic by time-resolved electroluminescence (TREL) measurement using pulse current generator. The LED layer structures were grown on a c-plane sapphire substrate and the active region consists of five 30 ${\AA}$ thick In0.15Ga0.85N QWs. The dimension of the fabricated LED chip was $800um{\times}300um$. Fig. 1. is shown external quantum efficiency (EQE) of both samples. Peak efficiency of LED with PSS is 92% and peak efficiency of LED with planar substrate is 82%. We also confirm that droop of PSS sample is slightly larger than planar substrate sample. Fig. 2 is shown that analysis of relation between IQE and decay time with increasing current using TREL method.

  • PDF

CRISPR/Cas9-mediated knockout of Rag-2 causes systemic lymphopenia with hypoplastic lymphoid organs in FVB mice

  • Kim, Joo-Il;Park, Jin-Sung;Kim, Hanna;Ryu, Soo-Kyung;Kwak, Jina;Kwon, Euna;Yun, Jun-Won;Nam, Ki-Taek;Lee, Han-Woong;Kang, Byeong-Cheol
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.166-175
    • /
    • 2018
  • Recombination activating gene-2 (RAG-2) plays a crucial role in the development of lymphocytes by mediating recombination of T cell receptors and immunoglobulins, and loss of RAG-2 causes severe combined immunodeficiency (SCID) in humans. Rag-2 knockout mice created using homologous recombination in ES cells have served as a valuable immunodeficient platform, but concerns have persisted on the specificity of Rag-2-related phenotypes in these animals due to the limitations associated with the genome engineering method used. To precisely investigate the function of Rag-2, we recently established a new Rag-2 knockout FVB mouse line ($Rag-2^{-/-}$) manifesting lymphopenia by employing a CRISPR/Cas9 system at Center for Mouse Models of Human Disease. In this study, we further characterized their phenotypes focusing on histopathological analysis of lymphoid organs. $Rag-2^{-/-}$ mice showed no abnormality in development compared to their WT littermates for 26 weeks. At necropsy, gross examination revealed significantly smaller spleens and thymuses in $Rag-2^{-/-}$ mice, while histopathological investigation revealed hypoplastic white pulps with intact red pulps in the spleen, severe atrophy of the thymic cortex and disappearance of follicles in lymph nodes. However, no perceivable change was observed in the bone marrow. Moreover, our analyses showed a specific reduction of lymphocytes with a complete loss of mature T cells and B cells in the lymphoid organs, while natural killer cells and splenic megakaryocytes were increased in $Rag-2^{-/-}$ mice. These findings indicate that our $Rag-2^{-/-}$ mice show systemic lymphopenia with the relevant histopathological changes in the lymphoid organs, suggesting them as an improved Rag-2-related immunodeficient model.

Ga/(In+Ga) 함량비에 따른 $Cu(In,Ga)Se_2$ 박막의 국소적 영역에서의 표면 퍼텐셜과 전류-전압 특성 연구 (Local surface potential and current-voltage behaviors of $Cu(In,Ga)Se_2$ thin-films with different Ga/(In+Ga) content)

  • 김지영;정아름;조윌렴;조현준;김대환;성시준;황대규;강진규;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.149-152
    • /
    • 2012
  • $Cu(In,Ga)Se_2$ (CIGS) is one of the most promising photovoltaic materials because of large conversion efficiency which has been achieved with an optimum Ga/(In+Ga) composition in $CuIn_{1-x}Ga_xSe_2$ (X~0.3). The Ga/(In+Ga) content is important to determine band gap, solar cell performances and carrier behaviors at grain boundary (GB). Effects of Ga/(In+Ga) content on physical properties of the CIGS layers have been extensively studied. In previous research, it is reported that GB is not recombination center of CIGS thin-film solar cells. However, GB recombination and electron-hole pair behavior studies are still lacking, especially influence of with different X on CIGS thin-films. We obtained the GB surface potential, local current and I-V characteristic of different X (00.7 while X~0.3 showed higher potential than 100 mV on GBs. Higher potential on GBs appears positive band bending. It can decrease recombination loss because of carrier separation. Therefore, we suggest recombination and electron-hole behaviors at GBs depending on composition of X.

  • PDF