• Title/Summary/Keyword: Recombinant virus

Search Result 337, Processing Time 0.03 seconds

Production of monoclonal antibodies against VP28 of white spot syndrome virus (WSSV) (White spot syndrome virus (WSSV)의 VP28에 대한 단클론 항체 생산)

  • Bang, Ji-hyeong;Kim, Wi-Sik;Kim, Choon-sup;Kim, Jong-Oh;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.32 no.1
    • /
    • pp.45-48
    • /
    • 2019
  • We developed and subsequently characterized mouse monoclonal antibodies (MAbs) against recombinant VP28 structural protein (rVP28) of white spot syndrome virus (WSSV). We established six hybridoma clones secreting MAbs against rVP28: 15A11, 20G6, 31H2, 34H6, 38D1 and 43A1. All six MAbs recognized the 25 kDa of protein in gill homogenates of WSSV-infected shrimp by western blot analysis, while no reactivity was observed in gill homogenates of normal shrimp. Moreover, high enzyme-linked immunosorbent assay (ELISA) optical density (OD) values (0.8-2.68) were observed in the hemolymphs from WSSV-infected shrimp, while low OD values (less than 0.24) were recorded in the hemolymphs from normal shrimp, by using these six MAbs produced in this study. These results suggest that these six MAbs are useful for the detection of WSSV.

Development of monoclonal antibody capture ELISA for the detection of antibodies against transmissible gastroenteritis virus

  • Oh, Yeonsu;Tark, Dongseob
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Transmissible gastroenteritis (TGE) is a disease confined to pigs of all ages, and can be a significant cause of economic loss in breeding herds, primarily because of the very high piglet mortality. The causative agent is a coronavirus, an enveloped positive strand RNA virus and closely related but non-enteropathogenic porcine respiratory coronavirus (PRCV). Although the TGEV has declined with its innocent relative, PRCV, further genome changes could not be excluded. Therefore, the herd-level immunity against this virus is important for the prevention of disease and should be carefully monitored. The aim of this study is to develop monoclonal antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) which can rapidly and accurately determine a large numbers of serum samples for surveillance purpose, and to compare the ELISA with a TGEV-specific serum neutralization test. The MAC-ELISA was sufficiently achieved, and the comparison with the virus-specific serum neutralization assays for 713 sera from pig farms showed a high correlation ($r^2=0.812$, P<0.001). The specificity and sensitivity of MAC-ELISA for the serum neutralization test 91.9% and 91.6%, respectively, which means that the antibody detected by the MAC-ELISA could be said to be protective antibodies. In conclusion, the developed MAC-ELISA would be very helpful in evaluating protective antibodies against TGEV.

Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2

  • George, Junu A.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.268-280
    • /
    • 2011
  • Background: Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). Methods: Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-${\gamma}$ staining. Results: Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. Conclusion: These results indicate that priming with live viral vector vaccines could induce different patterns of E protein-specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.

Construction and Characterization of an Anti-Hepatitis B Virus preS1 Humanized Antibody that Binds to the Essential Receptor Binding Site

  • Wi, Jimin;Jeong, Mun Sik;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1336-1344
    • /
    • 2017
  • Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma. With recent identification of HBV receptor, inhibition of virus entry has become a promising concept in the development of new antiviral drugs. To date, 10 HBV genotypes (A-J) have been defined. We previously generated two murine anti-preS1 monoclonal antibodies (mAbs), KR359 and KR127, that recognize amino acids (aa) 19-26 and 37-45, respectively, in the receptor binding site (aa 13-58, genotype C). Each mAb exhibited virus neutralizing activity in vitro, and a humanized version of KR127 effectively neutralized HBV infection in chimpanzees. In the present study, we constructed a humanized version (HzKR359-1) of KR359 whose antigen binding activity is 4.4-fold higher than that of KR359, as assessed by competitive ELISA, and produced recombinant preS1 antigens (aa 1-60) of different genotypes to investigate the binding capacities of HzKR359-1 and a humanized version (HzKR127-3.2) of KR127 to the 10 HBV genotypes. The results indicate that HzKR359-1 can bind to five genotypes (A, B, C, H, and J), and HzKR127-3.2 can also bind to five genotypes (A, C, D, G, and I). The combination of these two antibodies can bind to eight genotypes (A-D, G-J), and to genotype C additively. Considering that genotypes A-D are common, whereas genotypes E and F are occasionally represented in small patient population, the combination of these two antibodies might block the entry of most virus genotypes and thus broadly neutralize HBV infection.

Molecular Identification and Sequence Analysis of Coat Protein Gene of Ornithogalum mosaic virus Isolated from Iris Plant

  • Yoon, Hye-In;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.251-258
    • /
    • 2002
  • A potyvirus was isolated from cultivated Iris plants showing leaf streak mosaic symptom. Reverse transcription and polymerase chain reaction (RT-PCR) product of 1 kb long which encoded partial nuclear inclusion B and N-terminal region of viral coat protein (CP) genes for potyviruses was successfully amplified with a set of potyvirus-specific degenerate primers with viral RNA samples from the infected leaves: The RT-PCR product was cloned into the plasmid vector and its nucleotide sequences were determined. The nucleotide sequence of a CDNA clone revealed that the virus was an isolate of Ornithogalum moseic virus (OrMV) based on BLAST search analysis and was denoted as OrMV Korean isolate (OrMV-Ky). To further characterize the CP gene of the virus, a pair of OrMV-specific primers was designed and used for amplification of the entire CP gene of OrMV-Kr, The virus was easily and reliably detected from virus-infected Iris leaves by using the RT-PCR with the set of virus-specific primers. The RT-PCR product of the CP gene of the virus was cloned and its sequences were determined from selected recombinant CDNA clones. Sequence analysis revealed that the CP of OrMV-Kr consisted of 762 nucleotides, which encoded 253 amino acid residues. The CP of OrMV-Ky has 94.1-98.0% amino acid sequence identities (20 amino acid alterations) with that of other three isolates of OrMV, Two NT rich potential N-glycosylation motif sequences, NCTS and NWTM, and a DAC triple box responsible for aphid transmission were conserved in CPs of all the strains of OrMV. The virus has 58.5-86.2% amino acid sequence identities with that of other 16 potyviruses, indicating OrMV to be a distinct species of the genus. OrMV-Ky was the most related with Pterostylia virus Yin the phylogenetic tree analysis of CP at the amino acid level. This is the first report on the occurrence of OrMV in Iris plants in Korea. Data in this study indicate that OrMV is found in cultivated Iris plants, and may have mixed infection of OrMV and Iris severe mosaic virus in Korea.

Development of COVID-19 Neutralizing Antibody (NAb) Detection Kits Using the S1 RBD Protein of SARS-CoV-2 (코로나 바이러스 감염증-19의 재조합 S1 RBD 단백질을 이용한 COVID-19 바이러스의 중화항체 검사 키트의 개발)

  • Choi, Dong Ok;Lee, Kang Moon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.3
    • /
    • pp.257-265
    • /
    • 2021
  • The COVID-19 virus is a β-genus virus that causes infection by mediating the angiotensin convertible enzyme 2 (ACE2) receptor, which is distributed in large numbers in the human respiratory tract. The disease requires effective post-management of antibody production by complete healers and vaccinators because there is no perfect remedy for the virus infection. This study aimed to develop recombinant proteins specifically responsive to neutralizing antibodies in clinical specimens and use them to develop a rapid diagnostic kit to diagnose neutralizing antibodies quickly and conveniently against the COVID-19 virus and confirm the possibility of commercialization through a performance evaluation. Rapid diagnostic kits using COVID-19 S1 RBD recombinant proteins can be applied to rapid diagnostic kits, with positive percentage agreement (PPA) and negative percentage agreement (NPA) of 100% and 98.3%, respectively, compared to the U.S. FDA-approved ELISA kits. If the performance of the rapid diagnostic kit is improved and neutralizing antibodies can be analyzed quantitatively using quantitative analysis equipment, it can be used as important data to predict immunity to the COVID-19 virus and determine additional vaccinations.

In Vitro Expression of the Recombinant hFSH Gene using Retrovirus Vector System (In Vitro에서 Retrovirus Vector System을 이용한 재조합 hFSH 유전자의 발현)

  • Min, Gyeong-Heon;Kwon, Mo-Sun;Kim, Teoan;Koo, Bon-Chul
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.115-121
    • /
    • 2011
  • hFSH is a glycoprotein secreted from anterior pituitary and consists of ${\alpha}$ and ${\beta}$ subunits. Because of its major biological functions including sperm formation in the male and for follicular growth, FSH is used to cure woman's sterility. In this study we tried to produce recombinant hFSH in vitro using a retrovirus expression vector. Two major components of the vector we constructed are: ( i ) a DNA fragment containing ${\alpha}$ and ${\beta}$ genes fused by a DNA sequence coding carboxyl terminal peptide (CTP) of human chorionic gonadotropin, (ii) a DNA fragment corresponding woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Evaluation of expression profile of the recombinant FSH using reverse transcription PCR and enzyme-linked immunosorbent assay (ELISA). Among three cell lines tested, HeLa cells were the best for hFSH expression (5,395 mIU/ml), then followed by chicken embryonic fibroblast (CEF) cells and Chinese hamster ovary (CHO) cells in the order of hFSH production. In addition to the amount, the FSH produced from HeLa cells was highest in terms of biological activity which was determined by measuring cAMP.

Immunization with a soluble CD4-gp120 complex preferentially induces neutralizing anti-Human Immunodeficiency Virus Type lantibodies directed to conformation-dependent epitopes of gp120 (수용성 CD-gp120 결합체의 면역화로 유도된 항 gp120 항체의 특성에 관한 연구)

  • Kang, Chang-Yuil
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.61-67
    • /
    • 1994
  • One fundamental problem in developing an AIDS vaccine is antigenic variation of HIV. Despite a substantial induced immune response in gp120-immunized monkeys and humans, high titers of V3-directed type specific neutralizing antibodies may not be sufficient to neutralize continuously emerging new isolates. Several studies analyzing anti-gp120 antibodies in HIV-infected individuals have clearly indicated that most broadly neutralizing antibodies are directed to conformation-dependent epitopes. Therefore, it seems important to evaluate the potential efficacy of candidate gp120 vaccines at inducing such antibodies, that might be potentially protective against multiple HIV strains. One concern in the development of any recombinant protein as a vaccine is its stability when mixed with an adjuvant. This could be a particularly important factor for recombinant gp120, given the conformational nature of its major, broadly neutralizing, epitopes. We hypothesized that gp120 complexed with recombinant CD4 could stabilize the conformation-dependent epitopes and effectively deliver these epitopes to the immune system. In this study, a soluble gp120-CD4 complex in Syntex Adjuvant Formulation was tested in mice to analyze the anti-gp120 antibody response. With the aim of defining the fine specificity and neutalizing activities of the immune response, 17Mabs were generated and characterized. The studies indicate that the gp120-CD4 complex elicits neutralizing anti-gp120 antibodies, most of which are directed to the conformation dependent epitopes.

  • PDF

Overexpression and Characterization of appA Phytase Expressed by Recombinant Baculovirus-Infected Silkworm

  • CHEN YIN;ZHU ZHONGZE;LIN XU'AI;YI YONGZHU;ZHANG ZHIFANG;SHEN GUIFANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.466-471
    • /
    • 2005
  • An Escherichia coli strain with high phytase activity was screened from pig excreta. The phytase gene, appA, was amplified by PCR technique. To obtain large amounts of appA phytase, the appA gene was subcloned into the baculovirus transfer vector pVL1393 under the control of the Polyhedrin promoter. The recombinant baculovirus harboring the appA gene was obtained after co-transfection and screening. The early $5^{th}$ instar larvae of silkworm were infected with the recombinant virus. Using this system, the appA phytase was overproduced up to 7,710 U per ml hemolymph. SDS-PAGE analysis revealed the baculovirus-derived appA phytase to be approximately 47 kDa in size. The optimal temperature and pH of the expressed phytase were $60^{\circ}C$ and pH 4.5, respectively. The enzymatic activity was increased by the presence of 1 mM $Ca^{2+}$, 1 mM $Mn^{2+}$, or $0.02\%$ Triton X-100.

Rapid Expression of Bm46 in Bombyx mori Cell Lines, Larvae and Pupae

  • Wang, Haiyan;Chen, Keping;Guo, Zhongjian;Yao, Qin;Wang, Qiang;Mu, Runhong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.35-38
    • /
    • 2007
  • In this study, ORF 46 of Bombyx mod nucleopolyhedrovirus(Bm46) fused with EGFP was expressed in Bombyx mod cell lines, larvae and pupae by BmNPV Bacmid system. Bm46 and EGFP were cloned into donor plasmid pFastBacHTb, which was transformed to competent DH10B cells containing helper and BmNPV bacmid by site-specific transposition. Recombinant bacmid was used to transfected BmN-4 cells to produce the recombinant baculovirus vBm-Bm46-EGFP. Recombination virus was injected into silkworm larvae and pupae. The expression of the fusion protein was monitored by examining green fluorescence using a fluorescent microscope. Intense fluorescence in cells and silkworm was observed at 4 days post-infection, indicating the Bm46-EGFP fusion gene was expressed successfully.