• Title/Summary/Keyword: Recombinant Protein Production

Search Result 489, Processing Time 0.028 seconds

Optimized Culture Conditions for Production of the chimaeric protein, Uropathogenic Escherichia coli Adhesin - Cholera Toxin A2B Subunits, in Escherichia coli TB1

  • Lee, Yong-Hwa;Kim, Byung-Oh;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • The FimH subunit of type 1-fimbriated Escherichia coli has been determined as a major cause for urinary tract infections. In our previous study, the Adhesin/CTXA2B was expressed as soluble recombinant chimaeric protein derived from the uropathogenic Escherichia coli adhesin genetically coupled to cholera toxin A2B (CTXA2B) subunit in Escherichia coli. Since it is very important to optimize IPTG concentration and culture temperature to maximize cell growth and productivity, These optimal culture factors were determined to increase the productivity of the expressed Adhesin/CTXA2B chimaeric protein in Escherichia coli TB1 carrying pMALfimH/ctxa2b. Our data demonstrate that optimal concentration of IPTG for increased production of chimaeric protein was 0.5 mM. Additionally, culture time was 10 hours and temperature, 37${\circ}C$.

An Efficient Method for Production of Extracellular Human Tissue Factor in Escherichia coli (인간조직인자 세포외 부분의 효과적인 제조 방법)

  • Yoo, Hwan-Goo;Park, Yang-Jin;Lee, Woo-Yiel
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.561-565
    • /
    • 2009
  • Human Tissue factor is an essential enzyme activator that forms a catalytic complex with factor VII/ VIIa, and catalyzes both the extrinsic and intrinsic blood coagulation cascades. The extracellular domain of human tissue factor is responsible for association with the biological partner. The efficient procedures for preparing biologically active human tissue factor are essential for the preclinical and clinical studies with coaguligands. An expression vector in Escherichia coli has been constructed to direct the production of extracellular human tissue factor without a fusion protein or a $His_6$ at the N-terminus. The recombinant human tissue factor was expressed in large amounts as a non-native state in E. coli. The recombinant protein was simply renatured during the DEAE-sephacel chromatographic purification procedure. Our expression and purification system does not require a protease treatment or an additional chromatographic step to remove a fusion contaminant, which provides a very useful alternative to conventional expression systems for the production of human tissue factor.

Construction of Mammalian Cell Expression Vector for pAcGFP-bFLIP(L) Fusion Protein and Its Expression in Follicular Granulosa Cells

  • Yang, Run Jun;Li, Wu Feng;Li, Jun Ya;Zhang, Lu Pei;Gao, Xue;Chen, Jin Bao;Xu, Shang Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.401-409
    • /
    • 2010
  • FLICE inhibitory protein (FLIP) is one of the important anti-apoptotic proteins in the Fas/FasL apoptotic path which has death effect domains, mimicking the pro-domain of procaspase-8. To reveal the intracellular signal transduction molecules involved in the process of follicular development in the bovine ovary, we cloned the c-FLIP(L) gene in bovine ovary tissue with the reverse transcription polymerase chain reaction (RT-PCR), deleted the termination codon in its cDNA, and directionally cloned the amplified c-FLIP(L) gene into eukaryotic expression vector pAcGFP-Nl, including AcGFP, and successfully constructed the fusion protein recombinant plasmid. After identifying by restrictive enzyme BglII/EcoRI and sequencing, pAcGFP-bFLIP(L) was then transfected into follicular granulosa cells, mediated by Lipofectamine 2000, the expression of AcGFP observed and the transcription and expression of c-FLIP(L) detected by RT-PCR and Western blot. The results showed that the cattle c-FLIP(L) was successfully cloned; the pAcGFPbFLIP(L) fusion protein recombinant plasmid was successfuly constructed by introducing a BglII/EcoRI cloning site at the two ends of the c-FLIP(L) open reading frame and inserting a Kozak sequence before the start codon. AcGFP expression was detected as early as 24 h after transfection. The percentage of AcGFP positive cells reached about 65% after 24 h. A 1,483 bp transcription was amplified by RT-PCR, and a 83 kD target protein was detected by Western blot. Construction of the pAcGFP-bFLIP(L) recombinant plasmid should be helpful for further understanding the mechanism of regulation of c-FLIP(L) on bovine oocyte formation and development.

Expression and Production of Human Granulocyte Colony Stimulating Factor (G-CSF) in Silkworm Cell Line (누에세포를 이용한 인간 G-CSF의 발현 및 생산)

  • Park, Jeong-Hae;Jang, Ho-Jung;Kang, Seok-Woo;Goo, Tae-Won;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1577-1581
    • /
    • 2010
  • Granulocyte colony stimulating factor (G-CSF) is a hematopoietic cytokine that stimulates bone marrow cells to proliferate and differentiate into granulocytes. G-CSF is approved and used for therapeutic purposes. The endoplasmic reticulum (ER) signal peptide of hG-CSF was replaced with silkworm-specific signal peptides to express and efficiently secrete recombinant hG-CSF by silkworm cells. Plasmids that contain cDNAs for hG-CSF and hG-CSF fused with silkworm- specific signal peptides of prophenoloxidase activating enzyme (PPAE), protein disulfide isomerase (PDI), and bombyxin (BX) were constructed. The G-CSF protein was expressed in insect cell line BM5 and was detected by western blot analysis. The cells transfected with plasmids containing rhG-CSF genes with silkworm-specific signal sequences released mature rhG-CSF protein more efficiently than the cells transfected with pG-CSF, the plasmid containing human G-CSF gene, including its own signal sequence. The production of hG-CSF reached maximal level at four days post-transfection and remained at a high level until 7 days post-transfection. These data demonstrate that the modification of the human G-CSF mimic to insect proteins synthesized in ER greatly improves the production of the protein.

Development of Safe and Effective rec-OPV Using Poliovirus Sabin 1-derived Mucosal Vaccine Vector

  • Bae Yong-Soo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.121-124
    • /
    • 2002
  • This work was initiated to develope a recombinant oral poliovaccine (OPV), which is highly advanced in safety (minimizing VAPP) by introducing Type 2,3 poliovirus epitopes into our RPS-Vax system. We have introduced several potential vaccine epitopes of poliovirus Type 2, and 3 into RPS-Vax system, resulting in production of recombinant polioviruses. Any of these chimeric viruses, however, were not detected for their foreign gene expression by serotype-specific mouse antiserum. We have designed several folding units to stabilize the introduced vaccine protein and attached short epitope-concatamer or epitope-multimer to them, followed by production of chimeric viruses. Only those who have an HIV-1 Tat-mediated folding unit were nicely detected for the introduced foreign proteins by anti-Tat antiserum and type-specific peptide-induced antisera. Nevertheless, introduced epitopes were not detected in Western blot experiment with each serotype-specific antiserum. None of the mice inoculated with these chimeric viruses showed preventative immunity when challenged with Lansing and Leon wildtype 2 and 3 poliovirus, and the antiserum did not show neutralizing capacity in vitro. Conformational epitope covering B/C loop region of type 2 and 3 were newly designed by computer modeling, and introduced into the RPS-Vax vector system, followed by production of chimeric viruses. Introduced epitope regions were nicely detected by anti-Tag23 mAb or peptide antibody, but still not detected by poliovirus antiserum. Nevertheless, neutralizing antibody was detected in the Tg-PVR mice even when inoculated once with these chimeric viruses. Also, the immunized mice showed perfect preventative immunity against the wild Type poliovirus Lancing or Leon. When boosted appropriately, those chimeric virus-inoculated Tg-PVR mice produced equivalent amounts of neutralizing antibody to those in Sabin 2/3-immunized mice. These data strongly suggest that our recombinant poliovirus (RPS-PV2 and RPS-PV3) can be used as a safe and effective rec-OPV instead of any preexisting poliovaccine.

  • PDF

Metabolic Engineering for Resveratrol Derivative Biosynthesis in Escherichia coli

  • Jeong, Yu Jeong;Woo, Su Gyeong;An, Chul Han;Jeong, Hyung Jae;Hong, Young-Soo;Kim, Young-Min;Ryu, Young Bae;Rho, Mun-Chual;Lee, Woo Song;Kim, Cha Young
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.

Chicken Insulin-Like Growth Factor-I Stimulates Protein Synthesis of Chicken Embryo Myoblasts Cultured in Serum-Free Medium

  • Kita, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.17-20
    • /
    • 2001
  • The effect of chicken IGF-I on protein synthesis of chicken embryo myoblasts cultured in serum-free medium was examined. When myoblasts were expanded to approximate 20-30% of well, the medium was changed to the serum-free medium including 0, 2, 20, 200 or 2000 ng/ml of recombinant chicken IGF-I. The culture medium including 10% fetal calf serum (FCS) was used as positive control. After 1 day of incubation, protein synthesis was measured by the incorporation of [$^3H$]-L-leucine. Thereafter cells were continued to incubate for further 18 hours, and the radioactivity in the protein was measured as an index of protein synthesis. The values for protein synthesis cultured in the serum-free medium without chicken IGF-I or with 2000 ng/ml of chicken IGF-I were the lowest. Protein synthesis was elevated with increasing chicken IGF-I concentration from 0 to 20 ng/ml. The values for protein synthesis in the 20 ng/ml and 200 ng/ml IGF-I groups were about half of that of the FCS group. The present study revealed that the potency of chicken IGF-I at the levels of 20 to 200 ng/ml to stimulate myoblast protein synthesis was about half of that of 10% FCS.

Functional Assessments of Spodpotera Cell-expressed Human Erythrocyte-type Glucose Transport Protein with a Site-directed Mutagenesis

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.119-122
    • /
    • 2008
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. In order to exploit this, the effects of substitution at the highly conserved residue glutamine 282 of the human erythrocyte-type glucose transporter have been examined by in vitro site-directed mutagenesis. The modified human transport protein has been expressed in Spodoptera frugiperda 21 cells by using the recombinant baculovirus AcNPV-GTL. To assess the functional integrity of the expressed transporter, measurements of the transport inhibitor cytochalasin B binding were performed, involving the membranes prepared from 4 days post infection with no virus, with wild-type virus or AcNPV-GTL virus. Data obtained showed that there was little or no D-glucose-inhibitable binding in cells infected with the wild type or no virus. Only the recombinant virus infected cells exhibited specific binding, which is inhibitable by D- but not by L-glucose. However, there was a notable reduction in the affinity for the potent inhibitor cytochalasin B when binding measurements of AcNPV-GTL were compared with those of AcNPV-GT, which has no substitution. It is thus suggested that although the modified and unmodified human transporters differed slightly in their affinity for cytochalasin B, the glutamine substitution did not interfere the heterologous expression of the human transporter in the insect cells.

  • PDF

Cloning, Expression, and Purification of Recombinant Uricase Enzyme from Pseudomonas aeruginosa Ps43 Using Escherichia coli

  • Shaaban, Mona I.;Abdelmegeed, Eman;Ali, Youssif M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.887-892
    • /
    • 2015
  • Uricase is an important microbial enzyme that can be used in the clinical treatment of gout, hyperuricemia, and tumor lysis syndrome. A total of 127 clinical isolates of Pseudomonas aeruginosa were tested for uricase production. A Pseudomonas strain named Ps43 showed the highest level of native uricase enzyme expression. The open reading frame of the uricase enzyme was amplified from Ps43 and cloned into the expression vector pRSET-B. Uricase was expressed using E. coli BL21 (DE3). The ORF was sequenced and assigned GenBank Accession No. KJ718888. The nucleotide sequence analysis was identical to the coding sequence of uricase gene puuDof P. aeruginosa PAO1. We report the successful expression of P. aeruginosa uricase in Escherichia coli. E. coli showed an induced protein with a molecular mass of about 58 kDa that was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. We also established efficient protein purification using the Ni-Sepharose column with activity of the purified enzyme of 2.16 IU and a 2-fold increase in the specific activity of the pure enzyme compared with the crude enzyme.

Expression of Nutritionally Well-balanced Protein, AmA1, in Saccharomyces cerevisiae

  • Kim, Tae-Geum;Kim, Ju;Kim, Dae-Hyuk;Yang, Moon-Sik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.173-178
    • /
    • 2001
  • Food yeast, Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins. AmA1, a seed storage albumin from Amaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further improving food animal feed additives. In order to find an effective means of expressing AmA1 in yeast, the gene was cloned into an episomal shuttle vector. Four different promoters were tested: the glyceraldehyde-3-phosphate dehydrogenase promoter, galactose dehydrogenase 10 promoter, alcohol dehydrogenase II promoter, and a hybrid ADH2-GPD promoter. The recombinant AmA1 genes were then introduced into the yeast Saccharomyces cerevisiae 2805. Northern and Western blot analyses of the yeast under appropriate conditions revealed that AmA1 was expressed by all four promoters at varying levels. An enzyme-linked immunosorbent assay demonstrated that the amount of AmA1 protein in the recombinant yeast was 1.3-4.3% of the total soluble proteins. The highest expression level was obtained from the hybrid ADH2-GPD promoter.

  • PDF