• Title/Summary/Keyword: Recognition ratio

Search Result 622, Processing Time 0.022 seconds

Security Algorithm for Vehicle Type Recognition (에지영상의 비율을 이용한 차종 인식 보안 알고리즘)

  • Rhee, Eugene
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • In this paper, a new security algorithm to recognize the type of the vehicle with the vehicle image as a input image is suggested. The vehicle recognition security algorithm is composed of five core parts, such as the input image, background removal, edge areas extraction, pre-processing(binarization), and the vehicle recognition. Therefore, the final recognition rate of the security algorithm for vehicle type recognition can be affected by the function and efficiency of each step. After inputting image into a gray scale image and removing backgrounds, the binarization is performed by extracting only the edge region. After the pre-treatment process for making outlines clear, the type of vehicles is categorized into large vehicles, passenger cars and motorcycles through the ratio of height and width of the vehicle.

A Implementation and Performance Analysis of Emotion Messenger Based on Dynamic Gesture Recognitions using WebCAM (웹캠을 이용한 동적 제스쳐 인식 기반의 감성 메신저 구현 및 성능 분석)

  • Lee, Won-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.75-81
    • /
    • 2010
  • In this paper, we propose an emotion messenger which recognizes face or hand gestures of a user using a WebCAM, converts recognized emotions (joy, anger, grief, happiness) to flash-cones, and transmits them to the counterpart. This messenger consists of face recognition module, hand gesture recognition module, and messenger module. In the face recognition module, it converts each region of the eye and the mouth to a binary image and recognizes wink, kiss, and yawn according to shape change of the eye and the mouth. In hand gesture recognition module, it recognizes gawi-bawi-bo according to the number of fingers it has recognized. In messenger module, it converts wink, kiss, and yawn recognized by the face recognition module and gawi-bawi-bo recognized by the hand gesture recognition module to flash-cones and transmits them to the counterpart. Through simulation, we confirmed that CPU share ratio of the emotion messenger is minimized. Moreover, with respect to recognition ratio, we show that the hand gesture recognition module performs better than the face recognition module.

A Study on the Recognition of Korean Digits using Filter-Bank (필터뱅크를 이용한 한국어 숫자음 인식에 관한 연구)

  • Kim, Hong-Sik;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.481-483
    • /
    • 1989
  • This paper is concentrated on the recognition of Korean Digits. The speech signals of each of digits are fed into computer through the 18 bandpass filters, AD converter. Spectrum input data are analyzed and used. BASIC program language is used for recognition performance and the result of recognition is outputed to computer screen and printer. In this paper, the strength and weakness of filter-bank analysis method is described and the technique of real-time recognition is argued. In this experiment, Ratio of recognition for speaker dependent recognition was about 97% and recognition time was also satisfied. Therefore, A way of speaker independent recognition will be presented and using for special communication in the future.

  • PDF

Face Recognition Algorithm for Embedded System (임베디드 시스템 응용을 위한 얼굴인식 알고리즘의 경량화 연구)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.723-724
    • /
    • 2008
  • In this paper, we explore face recognition technology for embedded system. We develop an algorithm suitable for systems under ubiquitous environment. The basic requirements includes appropriate data format and ratio of feature data to achieve efficiency of algorithm. Our experiment presents a face recognition technique for handheld devices. The essential parts for face recognition based on embedded system includes; integer representation from floating point calculation and optimization for memory management.

  • PDF

Radar target recognition using Gaussian mixture model over wide-angular region (Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식)

  • 서동규;김경태;김효태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

A study on Effective Feature Parameters Comparison for Speaker Recognition (화자인식에 효과적인 특징벡터에 관한 비교연구)

  • Park TaeSun;Kim Sang-Jin;Kwang Moon;Hahn Minsoo
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.145-148
    • /
    • 2003
  • In this paper, we carried out comparative study about various feature parameters for the effective speaker recognition such as LPC, LPCC, MFCC, Log Area Ratio, Reflection Coefficients, Inverse Sine, and Delta Parameter. We also adopted cepstral liftering and cepstral mean subtraction methods to check their usefulness. Our recognition system is HMM based one with 4 connected-Korean-digit speech database. Various experimental results will help to select the most effective parameter for speaker recognition.

  • PDF

Implementation of Pen-Gesture Recognition System for Multimodal User Interface (멀티모달 사용자 인터페이스를 위한 펜 제스처인식기의 구현)

  • 오준택;이우범;김욱현
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.121-124
    • /
    • 2000
  • In this paper, we propose a pen gesture recognition system for user interface in multimedia terminal which requires fast processing time and high recognition rate. It is realtime and interaction system between graphic and text module. Text editing in recognition system is performed by pen gesture in graphic module or direct editing in text module, and has all 14 editing functions. The pen gesture recognition is performed by searching classification features that extracted from input strokes at pen gesture model. The pen gesture model has been constructed by classification features, ie, cross number, direction change, direction code number, position relation, distance ratio information about defined 15 types. The proposed recognition system has obtained 98% correct recognition rate and 30msec average processing time in a recognition experiment.

  • PDF

Selective Ridge Matching for Poor Quality Fingerprint verification (열악한 지문 영상의 검증을 위한 선택적 융선 정합 기법)

  • 최호석;박영태
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.9-12
    • /
    • 2001
  • Point pattern matching schemes for finger print recognition do not guarantee robust matching performance for finger print images of poor quality. We present a finger print recognition scheme, where transformation parameter of matched ridge pairs are estimated by Hough transform and the matching hypothesis is verified by a new measure of the matching degree using selective directional information. Proposed method may exhibit extremely low FAR(False Accept Ratio) while maintaining low reject ratio even for the images of poor quality because of the robustness to the variation of minutia points.

  • PDF

A Spectral Compensation Method for Noise Robust Speech Recognition (잡음에 강인한 음성인식을 위한 스펙트럼 보상 방법)

  • Cho, Jung-Ho
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.9-17
    • /
    • 2012
  • One of the problems on the application of the speech recognition system in the real world is the degradation of the performance by acoustical distortions. The most important source of acoustical distortion is the additive noise. This paper describes a spectral compensation technique based on a spectral peak enhancement scheme followed by an efficient noise subtraction scheme for noise robust speech recognition. The proposed methods emphasize the formant structure and compensate the spectral tilt of the speech spectrum while maintaining broad-bandwidth spectral components. The recognition experiments was conducted using noisy speech corrupted by white Gaussian noise, car noise, babble noise or subway noise. The new technique reduced the average error rate slightly under high SNR(Signal to Noise Ratio) environment, and significantly reduced the average error rate by 1/2 under low SNR(10 dB) environment when compared with the case of without spectral compensations.

Object-Action and Risk-Situation Recognition Using Moment Change and Object Size's Ratio (모멘트 변화와 객체 크기 비율을 이용한 객체 행동 및 위험상황 인식)

  • Kwak, Nae-Joung;Song, Teuk-Seob
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.556-565
    • /
    • 2014
  • This paper proposes a method to track object of real-time video transferred through single web-camera and to recognize risk-situation and human actions. The proposed method recognizes human basic actions that human can do in daily life and finds risk-situation such as faint and falling down to classify usual action and risk-situation. The proposed method models the background, obtains the difference image between input image and the modeled background image, extracts human object from input image, tracts object's motion and recognizes human actions. Tracking object uses the moment information of extracting object and the characteristic of object's recognition is moment's change and ratio of object's size between frames. Actions classified are four actions of walking, waling diagonally, sitting down, standing up among the most actions human do in daily life and suddenly falling down is classified into risk-situation. To test the proposed method, we applied it for eight participants from a video of a web-cam, classify human action and recognize risk-situation. The test result showed more than 97 percent recognition rate for each action and 100 percent recognition rate for risk-situation by the proposed method.