• 제목/요약/키워드: Recognition of License Plate

검색결과 216건 처리시간 0.022초

주차 지정된 공용 환경에서 도심 생활자의 주차 관리시스템 연구 (A Study on The Parking Management System for Urban Residents in Designated Parking Space Environment)

  • 남강현
    • 한국전자통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.877-884
    • /
    • 2023
  • 본 연구에서, 개인 차량이 주차할 수 있는 지정 공간 및 정의된 개인사용 시간에 다른 차량이 주차하여 있는 경우 초음파 물체 인식 센서를 활용하여 차량 진입을 파악하고, 그리고 카메라 센서가 번호판을 인식한다. 만일 개인 차량 소유자가 인정한 차량이 아닌 경우, 어플리케이션 서버의 "개인 주차장 운영 블록"은 경찰청의 차량 번호정보 조회 Open API를 근거로 개인의 전화번호를 받는다. 이후 주차 처리시 비권리권자는 주차 권리권자의 승인을 받아서 인정되는 시간만큼 주차를 하고 주차요금을 시청 공공 계좌에 입금한다. 본 연구를 통하여, 시청이 인정해준 개인 주차 공간에서 도심의 주차관리를 가장 효과적으로 할 수 있는 운영 처리 방법을 찾을 수 있었다.

에이다부스트 학습을 이용한 문자 데이터 검출 방법 (A Method of Detecting Character Data through a Adaboost Learning Method)

  • 장석우;변시우
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.655-661
    • /
    • 2017
  • 입력되는 정지 또는 동영상에 포함된 문자 정보는 영상의 내용을 대표하는 주요한 핵심 정보를 제공할 수 있기 때문에 다양한 종류의 영상 데이터를 분석하여 영상 내에 포함된 문자 영역들을 정확하게 추출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 영상으로부터 MCT 특징과 에이다부스트(Adaboost) 알고리즘을 이용하여 문자 영역만을 정확하게 검출하는 새로운 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 입력 영상으로부터 MCT 특징과 에이다부스트 알고리즘을 이용하여 문자의 후보 영역들을 추출한다. 그런 다음, 기하학적인 특징을 활용하여 추출된 문자의 후보 영역들로부터 비 문자 영역들을 제외하고 실제적인 문제 영역들만을 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 영상으로부터 기존의 방법보다 문자 영역들을 2.1% 보다 강인하게 추출한다는 것을 보여준다. 본 논문에서 제안된 문자 영역 검출 방법은 상점의 간판 인식, 자동차의 번호판 인식 등과 같은 멀티미디어 및 영상 처리와 관련된 실제 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.

ONNX 기반 런타임 성능 분석: YOLO와 ResNet (ONNX-based Runtime Performance Analysis: YOLO and ResNet)

  • 김정현;이다은;최수빈;전경구
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.89-100
    • /
    • 2024
  • 컴퓨터 비전 분야에서 You Look Only Once(YOLO)와 ResNet 등의 모델은 실시간 성능과 높은 정확도로 인해 널리 사용되고 있다. 그러나 실제 환경에 이러한 모델들을 적용하려면 런타임 호환성, 메모리 사용량, 컴퓨팅 리소스 및 실시간 조건 등의 요소를 고려해야 한다. 본 연구에서는 세 가지 심층 모델 런타임 ONNX Runtime, TensorRT 및 OpenCV DNN의 특성을 비교하고, 2가지 모델에 대한 성능을 분석한다. 이러한 분석을 통해 현장 적용을 위한 런타임 선택에 기준을 제공해 주는 것이 논문의 목표이다. 실험에서는 차량 번호판 인식 및 분류 업무에 대해 소요 시간, 메모리 사용량, 정확도 평가 지표를 기반으로 런타임들을 비교한다. 실험 결과, ONNX Runtime은 복잡한 객체 탐지 성능이 우수하며, OpenCV DNN은 제한된 메모리 환경에 적합하고, TensorRT는 복잡한 모델의 실행 속도가 우수하다는 것을 보여준다.

Development of a parking control system that improves the accuracy and reliability of vehicle entry and exit based on LIDAR sensing detection

  • Park, Jeong-In
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.9-21
    • /
    • 2022
  • 이 논문에서 우리는 제4차 산업혁명의 핵심기술의 하나인 LiDAR 센서를 기반으로 기존 검지 카메라의 검지율을 개선하여 입출차 차량에 대해 100% 검지가능한 시스템을 개발하였다. 현재 운영 중인 주차장은 98% 정도의 차량번호 인식율에만 의존하고 있으므로 입출차 카운트의 불일치, 부정확한 정보 제공 등으로 사전 예약불가, 실시간 주차정보 불일치 등 여러 가지 문제를 안고 있다. 주차현황정보는 정확도 100% 수준으로 관리되어야 하며 이를 위해 우리는 LIDAR를 이용하여 주차장의 입출차 검지 체계를 구축하였다. 주로 자율주행 자동차의 차량 및 사물검지를 위해 필수적으로 사용되고 있는 LIDAR 센서를 응용하여 주차시스템을 개발하는 경우, 검지된 센싱 정보로 차량 입출차 정보의 정확성과 입출차 카운트의 신뢰도를 개선할 수 있다. LIDAR의 분해능은 100%로 보장이 되었고 주차장의 입차(+), 출차(-) 차량의 합계가 0이 되도록 구현할 수 있었다. 우리는 3,000대의 실제 주차장 출입 차량으로 테스트해 본 결과 주차 차량 입출차 정확도를 100%로 결과를 도출하였다.

인공지능을 활용한 도주경로 예측 및 추적 시스템 (Escape Route Prediction and Tracking System using Artificial Intelligence)

  • 양범석;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.225-227
    • /
    • 2022
  • 현재 서울특별시는 25개 구청에 7만5천여대의 CCTV가 설치되어 있다. 서울특별시 구청별로, CCTV관제를 위한 관제센터를 구축하고 24시간 인공지능 지능형 영상분석을 통해 차량 종류, 번호판인식, 색상 분류 등의 정보를 빅데이터로 구축하고 있다. 서울특별시는 국토교통부, 경찰청, 소방청, 법무부, 군부대 등과 MOU를 체결하여 긴급/응급 상황에 신속한 대응이 가능하도록 하고 있다. 즉, 각 구청의 CCTV영상을 제공하여 안전하고 재난의 예방이 가능한 스마트시티를 구축하고 있다. 본 논문에서는 CCTV영상을 인공지능을 통해 사건발생 시 차량 및 인원에 대한 특징을 추출하고 이를 기반으로 도주경로를 예측하고 지속적인 추적이 가능하도록 설계한다. 해당 경로의 CCTV영상을 인공지능이 자동으로 선택하여 표출하도록 설계한다. 해당 관할 권역 이외 지역으로 사건 관련 사람이나 차량의 도주경로가 예상될 때 인접 구청에 영상정보와 추출된 정보를 제공함으로써 스마트시티 통합플랫폼을 확장할 수 있도록 설계한다. 본 논문은 스마트시티 통합플랫폼 연구발전에 기초자료로 기여할 것이다.

  • PDF

신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어 (Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning)

  • 문종혁;김도형;최종선;최재영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권4호
    • /
    • pp.133-142
    • /
    • 2021
  • 최근 딥러닝은 하드웨어 성능이 향상됨에 따라 자연어 처리, 영상 인식 등의 다양한 기술에 접목되어 활용되고 있다. 이러한 기술들을 활용해 지능형 교통 시스템(ITS), 스마트홈, 헬스케어 등의 산업분야에서 데이터를 분석하여 고속도로 속도위반 차량 검출, 에너지 사용량 제어, 응급상황 등과 같은 고품질의 서비스를 제공하며, 고품질의 서비스를 제공하기 위해서는 정확도가 향상된 딥러닝 모델이 적용되어야 한다. 이를 위해 서비스 환경의 데이터를 분석하기 위한 딥러닝 모델을 개발할 때, 개발자는 신뢰성이 검증된 최신의 딥러닝 모델을 적용할 수 있어야 한다. 이는 개발자가 참조하는 딥러닝 모델에 적용된 학습 데이터셋의 정확도를 측정하여 검증할 수 있다. 이러한 검증을 위해서 개발자는 학습 데이터셋, 딥러닝의 계층구조 및 개발 환경 등과 같은 내용을 포함하는 딥러닝 모델을 문서화하여 적용하기 위한 구조적인 정보가 필요하다. 본 논문에서는 신뢰성있는 딥러닝 기반 데이터 분석 모델을 참조하기 위한 딥러닝 기술 언어를 제안한다. 제안하는 기술 언어는 신뢰성 있는 딥러닝 모델을 개발하는데 필요한 학습데이터셋, 개발 환경 및 설정 등의 정보와 더불어 딥러닝 모델의 계층구조를 표현할 수 있다. 제안하는 딥러닝 기술 언어를 이용하여 개발자는 지능형 교통 시스템에서 참조하는 분석 모델의 정확도를 검증할 수 있다. 실험에서는 제안하는 언어의 유효성을 검증하기 위해, 번호판 인식 모델을 중심으로 딥러닝 기술 문서의 적용과정을 보인다.