• Title/Summary/Keyword: Recognition memory

Search Result 478, Processing Time 0.024 seconds

Mobile Gesture Recognition using Hierarchical Recurrent Neural Network with Bidirectional Long Short-Term Memory (BLSTM 구조의 계층적 순환 신경망을 이용한 모바일 제스처인식)

  • Lee, Myeong-Chun;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.321-323
    • /
    • 2012
  • 스마트폰 사용의 보편화와 센서기술의 발달로 이를 응용하는 다양한 연구가 진행되고 있다. 특히 가속도, GPS, 조도, 방향센서 등의 센서들이 스마트폰에 부착되어 출시되고 있어서, 이를 이용한 상황인지, 행동인식 등의 관련 연구들이 활발하다. 하지만 다양한 클래스를 분류하면서 높은 인식률을 유지하는 것은 어려운 문제이다. 본 논문에서는 인식률 향상을 위해 계층적 구조의 순환 신경망을 이용하여 제스처를 인식한다. 스마트폰의 가속도 센서를 이용하여 사용자의 제스처 데이터를 수집하고 BLSTM(Bidirectional Long Short-Term Memory) 구조의 순환신경망을 계층적으로 사용하여, 20가지 사용자의 제스처와 비제스처를 분류한다. 약 24,850개의 시퀀스 데이터를 사용하여 실험한 결과, 기존 BLSTM은 평균 89.17%의 인식률을 기록한 반면 계층적 BLSTM은 평균 91.11%의 인식률을 나타내었다.

The Sequential GHT for the Efficient Pattern Recognition (효율적 패턴 인식을 위한 순차적 GHT)

  • 김수환;임승민;이규태;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.327-334
    • /
    • 1991
  • This paper proposes an efficient method of implementing the generalized Hough transform (GHT), which has been hindered by an excessive computing load and a large memory requirement. The conventional algorithm requires a parameter space of 4 dimensions in detection a rotated, scaled, and translated object in an input image. Prior to the application of GHT to the input image, the proposed method determines the angle of rotation and the scaling factor of the test image using the proportion of the edge components between the reference image and test image. With the rotation angle and the scaling factor already determined, the parameter spaceis to be reduced to a simple array of 2 dimensions by applying the unit GHT only one time. The experiments with the image of airplanes reveal that both of the computing time and the requires memory size are reduced by 95 percent, without any degradatationof accuracy, compared with the conventional GHT algorithm.

  • PDF

FPGA based Implementation of FAST and BRIEF algorithm for Object Recognition (객체인식을 위한 FAST와 BRIEF 알고리즘 기반 FPGA 설계)

  • Heo, Hoon;Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.202-207
    • /
    • 2013
  • This paper implemented the conventional FAST and BRIEF algorithm as hardware on Zynq-7000 SoC Platform. Previous feature-based hardware accelerator is mostly implemented using the SIFT or SURF algorithm, but it requires excessive internal memory and hardware cost. The proposed FAST & BRIEF accelerator reduces approximately 57% of internal memory usage and 70% of hardware cost compared to the conventional SIFT or SURF accelerator, and it processes 0.17 pixel per Clock.

Formation of Attention and Associative Memory based on Reinforcement Learning

  • Kenichi, Abe;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.3-22
    • /
    • 2001
  • An attention task, in which context information should be extracted from the first presented pattern, and the recognition answer of the second presented pattern should be generated using the context information, is employed in this paper. An Elman-type recurrent neural network is utilized to extract and keep the context information. A reinforcement signal that indicates whether the answer is correct or not, is only a signal that the system can obtain for the learning. Only by this learning, necessary context information became to be extracted and kept, and the system became to generate the correct answers. Furthermore, the function of an associative memory is observed in the feedback loop in the Elman-type neural network.

  • PDF

Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications

  • Young-Min Kim;Jihye Lee;Deok-Jin Jeon;Si-Eun Oh;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.7.1-7.9
    • /
    • 2021
  • Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.

Development of an algorithm for solving correspondence problem in stereo vision (스테레오 비젼에서 대응문제 해결을 위한 알고리즘의 개발)

  • Im, Hyuck-Jin;Gweon, Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 1993
  • In this paper, we propose a stereo vision system to solve correspondence problem with large disparity and sudden change in environment which result from small distance between camera and working objects. First of all, a specific feature is divided by predfined elementary feature. And then these are combined to obtain coded data for solving correspondence problem. We use Neural Network to extract elementary features from specific feature and to have adaptability to noise and some change of the shape. Fourier transformation and Log-polar mapping are used for obtaining appropriate Neural Network input data which has a shift, scale, and rotation invariability. Finally, we use associative memory to obtain coded data of the specific feature from the combination of elementary features. In spite of specific feature with some variation in shapes, we could obtain satisfactory 3-dimensional data from corresponded codes.

  • PDF

A Design and Implementation of Improving Children's Memory Application Based on Kinect Sensor (Kinect Sensor 기반의 아동 기억력 향상 애플리케이션 설계 및 구현)

  • Won Joo Lee;Gyeong Min Kim;Gi Jae Sin;Su Ji Kim;Seo Yeong Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.53-54
    • /
    • 2023
  • 본 논문에서는 키넥트 센서 기반의 아동 기억력 향상 애플리케이션을 설계하고 구현한다. 이 애플리케이션은 유아층의 기억력을 향상시키고 팔 동작으로 소근육 발달에 도움을 주는 카드 짝 맞추기 게임의 기능을 구현한다. 카드 짝 맞추기 게임은 키넥트 센서에서 인식한 사용자의 스켈레톤, 뎁스스트림, 조인트, 음성 정보를 활용하여 플레이어의 오른손을 인식하여 카드를 뒤집고 짝이 맞는 경우는 그대로 두고 짝이 맞지 않는 경우에는 다시 뒤집는다. 사용자는 카드의 위치와 그림을 기억하며 16장의 카드를 모두 맞출때까지 계속 진행한다. 이 게임은 유아들이 재미있게 게임을 즐기면서 기억력을 향상시킬 수 있다.

  • PDF

Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition (얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발)

  • Oh, Sun-Moon;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the face recognition system using HNMA(Hippocampal Neuron Modeling Algorithm) which can remodel the cerebral cortex and hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature-vector of the face images very fast and construct the optimized feature each image. The system is composed of two parts. One is feature-extraction and the other is teaming and recognition. In the feature extraction part, it can construct good-classified features applying PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) in order. In the learning part, it cm table the features of the image data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in the dentate gyrus region and remove the noise through the associate memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are face changes, pose changes and low quality image. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

Design and Implementation of CW Radar-based Human Activity Recognition System (CW 레이다 기반 사람 행동 인식 시스템 설계 및 구현)

  • Nam, Jeonghee;Kang, Chaeyoung;Kook, Jeongyeon;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.426-432
    • /
    • 2021
  • Continuous wave (CW) Doppler radar has the advantage of being able to solve the privacy problem unlike camera and obtains signals in a non-contact manner. Therefore, this paper proposes a human activity recognition (HAR) system using CW Doppler radar, and presents the hardware design and implementation results for acceleration. CW Doppler radar measures signals for continuous operation of human. In order to obtain a single motion spectrogram from continuous signals, an algorithm for counting the number of movements is proposed. In addition, in order to minimize the computational complexity and memory usage, binarized neural network (BNN) was used to classify human motions, and the accuracy of 94% was shown. To accelerate the complex operations of BNN, the FPGA-based BNN accelerator was designed and implemented. The proposed HAR system was implemented using 7,673 logics, 12,105 registers, 10,211 combinational ALUTs, and 18.7 Kb of block memory. As a result of performance evaluation, the operation speed was improved by 99.97% compared to the software implementation.

Trait individual difference of reinforcement-based decision criterial learning during episodic recognition judgments (일화 재인 기억에서 강화에 근거한 의사결정 준거 학습의 특성 개인차 연구)

  • Han, Sang-Hoon
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.3
    • /
    • pp.357-381
    • /
    • 2009
  • Although it is known that there are personality characteristic variances in the sensitivity to environmental feedback, the trait individual difference has scarcely been explored in the context of recognition memory decision. The present study investigated this issue by examining the relationship between the feedback-based adaptive flexibility of recognition criterion positioning and personality differences in general sensitivity to non-laboratory outcomes. Experiment 1 demonstrated that veridical feedback itself had little effect on the recognition decision criterion whereas Experiment 2 demonstrated that biased feedback manipulations selectively restricted to high confidence errors, induced shifts even in the overall Old/New category criterion. Critically, individual differences in stable personality characteristic linked to reward seeking(Behavioral Activation System-BAS) and anxiety avoidance (Behavioral Inhibition System-BIS) has been shown to predict the sensitivity of subjects to this form of feedback-induced criterion learning. This data further support the idea that incremental reinforcement-based learning mechanism not often considered important during explicit recognition decisions may play a key role in criterion setting.

  • PDF