• Title/Summary/Keyword: Recognition and Detection

Search Result 2,263, Processing Time 0.037 seconds

Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System (가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.776-788
    • /
    • 2020
  • In this paper, a vehicle type recognition system using deep learning and a license plate recognition system are proposed. In the existing system, the number plate area extraction through image processing and the character recognition method using DNN were used. These systems have the problem of declining recognition rates as the environment changes. Therefore, the proposed system used the one-stage object detection method YOLO v3, focusing on real-time detection and decreasing accuracy due to environmental changes, enabling real-time vehicle type and license plate character recognition with one RGB camera. Training data consists of actual data for vehicle type recognition and license plate area detection, and synthetic data for license plate character recognition. The accuracy of each module was 96.39% for detection of car model, 99.94% for detection of license plates, and 79.06% for recognition of license plates. In addition, accuracy was measured using YOLO v3 tiny, a lightweight network of YOLO v3.

Real Time Face Detection and Recognition based on Embedded System (임베디드 시스템 기반 실시간 얼굴 검출 및 인식)

  • Lee, A-Reum;Seo, Yong-Ho;Yang, Tae-Kyu
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In this paper, we proposed and developed a fast and efficient real time face detection and recognition which can be run on embedded system instead of high performance desktop. In the face detection process, we detect a face by finding eye part which is one of the most salient facial features after applying various image processing methods, then in the face recognition, we finally recognize the face by comparing the current face with the prepared face database using a template matching algorithm. Also we optimized the algorithm in our system to be successfully used in the embedded system, and performed the face detection and recognition experiments on the embedded board to verify the performance. The developed method can be applied to automatic door, mobile computing environment and various robot.

  • PDF

Speaker Detection and Recognition for a Welfare Robot

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.835-838
    • /
    • 2003
  • Computer vision and natural-language dialogue play an important role in friendly human-machine interfaces for service robots. In this paper we describe an integrated face detection and face recognition system for a welfare robot, which has also been combined with the robot's speech interface. Our approach to face detection is to combine neural network (NN) and genetic algorithm (GA): ANN serves as a face filter while GA is used to search the image efficiently. When the face is detected, embedded Hidden Markov Model (EMM) is used to determine its identity. A real-time system has been created by combining the face detection and recognition techniques. When motivated by the speaker's voice commands, it takes an image from the camera, finds the face inside the image and recognizes it. Experiments on an indoor environment with complex backgrounds showed that a recognition rate of more than 88% can be achieved.

  • PDF

Pole Position Detection Method by Using Pole and Character Recognition (전철주 및 문자 인식을 이용한 시설물 절대위치 검지 방법)

  • Choi, Woo-Yong;Park, Jong-Gook;Lee, Byeong-Gon;Joo, Yong-Hwan;Han, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.704-710
    • /
    • 2016
  • In this paper, we proposed pole position detection system for providing exact location information to users. The proposed system consists of pole recognition part and pole number recognition part. Above all, exact pole recognition is carried out by PDD(Pole Detection Device). And recognition of pole number is performed by PID(Pole Inspection Device). Acquired image by using line scan camera is judged whether it is free bracket or not through image processing. When it is judged as free bracket, pole number image is acquired by OCR camera and recognized by OCR. By recognizing pole number, exact location information is provided to user.

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.

Optimization of State-Based Real-Time Speech Endpoint Detection Algorithm (상태변수 기반의 실시간 음성검출 알고리즘의 최적화)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.2 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • In this paper, a speech endpoint detection algorithm is proposed. The proposed algorithm is a kind of state transition-based ones for speech detection. To reject short-duration acoustic pulses which can be considered noises, it utilizes duration information of all detected pulses. For the optimization of parameters related with pulse lengths and energy threshold to detect speech intervals, an exhaustive search scheme is adopted while speech recognition rates are used as its performance index. Experimental results show that the proposed algorithm outperforms the baseline state-based endpoint detection algorithm. At 5 dB input SNR for the beamforming input, the word recognition accuracies of its outputs were 78.5% for human voice noises and 81.1% for music noises.

  • PDF

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

An Implementation of the Olfactory Recognition Contents for Ubiquitous (유비쿼터스를 위한 후각 인식 컨텐츠 구현)

  • Lee, Hyeon Gu;Rho, Yong Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.85-90
    • /
    • 2008
  • Recently, with the sensor technology, research about the electronic nose system which imitated the olfactory organ are being pushed actively. But, in case of general electronic nose system, an aroma is measured at the laboratory space where blocked external environment and is analyzed a part of measured data. In this paper, we propose the system which can measure and recognize an aroma in natural environment. We propose the Entropy algorithm which can detect the sensor reaction section among the continuous detection processing about an aroma. And we implement the aroma recognition system using the PCA(Principal Components Analysis) and K-NN(K-Nearest Neighbor) about the detected aroma. In order to evaluate the performance, we measured the aroma pattern, about 9 aroma oil, 50 times respectively. And we experimented the aroma detection and recognition using this. There was an error of 0.2s in the aroma detection and we get 84.3% recognition rate of the aroma recognition.

A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images (딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구)

  • Cho, Youngjoon;Kim, Jongwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.20-25
    • /
    • 2021
  • The target-object classification method was implemented using a deep-learning-based detection model in real-time images. The object detection model was a deep-learning-based detection model that allowed extensive data collection and machine learning processes to classify similar target-objects. The recognition model was implemented by changing the processing structure of the detection model and combining developed the vision-processing module. To classify the target-objects, the identity and similarity were defined and applied to the detection model. The use of the recognition model in industry was also considered by verifying the effectiveness of the recognition model using the real-time images of an actual soccer game. The detection model and the newly constructed recognition model were compared and verified using real-time images. Furthermore, research was conducted to optimize the recognition model in a real-time environment.