• Title/Summary/Keyword: Recognition Error Rate

Search Result 414, Processing Time 0.096 seconds

Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method (MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.137-142
    • /
    • 2013
  • Speech recognition system is input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Therefore, in this paper, we propose a speech recognition error correction method using phoneme similarity rate and reliability measures based on the characteristics of the phonemes. Phonemes similarity rate was phoneme of learning model obtained used MFCC and LPC feature extraction method, measured with reliability rate. Minimize the error to be unrecognized by measuring the rate of similar phonemes and reliability. Turned out to error speech in the process of speech recognition was error compensation performed. In this paper, the result of applying the proposed system showed a recognition rate of 98.3%, error compensation rate 95.5% in the speech recognition.

An Positioning Error Analysis of 3D Face Recognition Apparatus (3차원 안면자동인식기의 Positioning 오차분석)

  • Kwak, Chang-Kyu;Cho, Yong-Beum;Sohn, Eun-Hae;Yoo, Jung-Hee;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2006
  • 1. Objectives We are going to develope 3D Face Recognition Apparatus to analyse the facial characteristics of the Sasangin. In the process, we should identify the recognition rate of the three dimensional position using this Apparatus. 2. Methods We took a photograph of calibrator($280{\times}400mm$) with interval of 20mm longitudinal direction of 10 times using 3D Face Recognition Apparatus. In the practice, we obtained 967 point to the exclusion of points deviating from the visual field of dual camera. And we made a comparison between measurement values and three dimensional standard values to calculate the errors. 3. Results and Conclusions In this test, the average error rate of X axis values was 0.019% and the maximum error rate of X axis values was 0.033%, the average error rate of Y axis values was 0.025% and the maximum error rate of Y axis values was 0.044%, the average error rate of Z axis values was 0.158% and the maximum error rate of Z axis values was 0.269%. This results exhibit much improvement upon the average error rate 1% and the maximum error rate 2.242% of the existing 3D Recognition Apparatus. In conclusion, we assessed that this apparatus was adaptable to abstract the facial characteristic point from three dimensional face shape in the mechanical aspects.

  • PDF

Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction (음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.83-90
    • /
    • 2010
  • In vocabulary recognition system has reduce recognition rate unrecognized error cause of similar phoneme recognition and due to provided inaccurate vocabulary. Input of inaccurate vocabulary by feature extraction case of recognition by appear result of unrecognized or similar phoneme recognized. Also can't feature extraction properly when phoneme recognition is similar phoneme recognition. In this paper propose vocabulary recognition post-process error correction system using phoneme likelihood based on phoneme feature. Phoneme likelihood is monophone training phoneme data by find out using MFCC and LPC feature extraction method. Similar phoneme is induced able to recognition of accurate phoneme due to inaccurate vocabulary provided unrecognized reduced error rate. Find out error correction using phoneme likelihood and confidence when vocabulary recognition perform error correction for error proved vocabulary. System performance comparison as a result of recognition improve represent MFCC 7.5%, LPC 5.3% by system using error pattern and system using semantic.

Key-word Recognition System using Signification Analysis and Morphological Analysis (의미 분석과 형태소 분석을 이용한 핵심어 인식 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1586-1593
    • /
    • 2010
  • Vocabulary recognition error correction method has probabilistic pattern matting and dynamic pattern matting. In it's a sentences to based on key-word by semantic analysis. Therefore it has problem with key-word not semantic analysis for morphological changes shape. Recognition rate improve of vocabulary unrecognized reduced this paper is propose. In syllable restoration algorithm find out semantic of a phoneme recognized by a phoneme semantic analysis process. Using to sentences restoration that morphological analysis and morphological analysis. Find out error correction rate using phoneme likelihood and confidence for system parse. When vocabulary recognition perform error correction for error proved vocabulary. system performance comparison as a result of recognition improve represent 2.0% by method using error pattern learning and error pattern matting, vocabulary mean pattern base on method.

Accelerating Levenberg-Marquardt Algorithm using Variable Damping Parameter (가변 감쇠 파라미터를 이용한 Levenberg-Marquardt 알고리즘의 학습 속도 향상)

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2010
  • The damping parameter of Levenberg-Marquardt algorithm switches between error backpropagation and Gauss-Newton learning and affects learning speed. Fixing the damping parameter induces some oscillation of error and decreases learning speed. Therefore, we propose the way of a variable damping parameter with referring to the alternation of error. The proposed method makes the damping parameter increase if error rate is large and makes it decrease if error rate is small. This method so plays the role of momentum that it can improve learning speed. We tested both iris recognition and wine recognition for this paper. We found out that this method improved learning speed in 67% cases on iris recognition and in 78% cases on wine recognition. It was also showed that the oscillation of error by the proposed way was less than those of other algorithms.

A Modified Viterbi Algorithm for Word Boundary Detection Error Compensation (단어 경계 검출 오류 보정을 위한 수정된 비터비 알고리즘)

  • Chung, Hoon;Chung, Ik-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.21-26
    • /
    • 2007
  • In this paper, we propose a modified Viterbi algorithm to compensate for endpoint detection error during the decoding phase of an isolated word recognition task. Since the conventional Viterbi algorithm explores only the search space whose boundaries are fixed to the endpoints of the segmented utterance by the endpoint detector, the recognition performance is highly dependent on the accuracy level of endpoint detection. Inaccurately segmented word boundaries lead directly to recognition error. In order to relax the degradation of recognition accuracy due to endpoint detection error, we describe an unconstrained search of word boundaries and present an algorithm to explore the search space with efficiency. The proposed algorithm was evaluated by performing a variety of simulated endpoint detection error cases on an isolated word recognition task. The proposed algorithm reduced the Word Error Rate (WER) considerably, from 84.4% to 10.6%, while consuming only a little more computation power.

Variation of the Verification Error Rate of Automatic Speaker Recognition System With Voice Conditions (다양한 음성을 이용한 자동화자식별 시스템 성능 확인에 관한 연구)

  • Hong Soo Ki
    • MALSORI
    • /
    • no.43
    • /
    • pp.45-55
    • /
    • 2002
  • High reliability of automatic speaker recognition regardless of voice conditions is necessary for forensic application. Audio recordings in real cases are not consistent in voice conditions, such as duration, time interval of recording, given text or conversational speech, transmission channel, etc. In this study the variation of verification error rate of ASR system with the voice conditions was investigated. As a result in order to decrease both false rejection rate and false acception rate, the various voices should be used for training and the duration of train voices should be longer than the test voices.

  • PDF

A Study on the Optimal Mahalanobis Distance for Speech Recognition

  • Lee, Chang-Young
    • Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.

  • PDF

Multimodal audiovisual speech recognition architecture using a three-feature multi-fusion method for noise-robust systems

  • Sanghun Jeon;Jieun Lee;Dohyeon Yeo;Yong-Ju Lee;SeungJun Kim
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.22-34
    • /
    • 2024
  • Exposure to varied noisy environments impairs the recognition performance of artificial intelligence-based speech recognition technologies. Degraded-performance services can be utilized as limited systems that assure good performance in certain environments, but impair the general quality of speech recognition services. This study introduces an audiovisual speech recognition (AVSR) model robust to various noise settings, mimicking human dialogue recognition elements. The model converts word embeddings and log-Mel spectrograms into feature vectors for audio recognition. A dense spatial-temporal convolutional neural network model extracts features from log-Mel spectrograms, transformed for visual-based recognition. This approach exhibits improved aural and visual recognition capabilities. We assess the signal-to-noise ratio in nine synthesized noise environments, with the proposed model exhibiting lower average error rates. The error rate for the AVSR model using a three-feature multi-fusion method is 1.711%, compared to the general 3.939% rate. This model is applicable in noise-affected environments owing to its enhanced stability and recognition rate.

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.