• Title/Summary/Keyword: Reclaimed silt loam

Search Result 25, Processing Time 0.023 seconds

Effect of Desalinization on Early Seedling Growth of Winter Barley in New Tideland (신간탁지 토양의 제염이 보리의 초기생육에 미치는 영향)

  • 이강수;최선영;최원열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.112-118
    • /
    • 1997
  • This study was conducted to obtain basic information on the desalinization in newly reclaimed tideland. A desalinization experiment with leaching method was carried out using the soil samples collected in Haenam tideland, and the early growth response of winter barley to salt stress during the desalinization was investigated by measuring emergence rate, plant height, leaf area and fresh weight. The soil in Haenam tideland was saline-sodic with 59mS / cm of electrical conductivity and pH 8.0, and the soil texture was silty loam with 16% clay and 75% silt. Depth of water for desalinization(DWD) to decrease the electrical conductivity below 4mS /cm was 140mm in 5cm depth soil and 240mm in 20cm depth soil. The value of pH of soil and leaching water increased from 8.0 to 8.3 until the electrical conductivity decreased to about 6mS / cm during the desalinization. .The emergence rate of winter barley was over 75% in the DWD above 80mm and showed no significant difference with the DWD. The DWD for the normal growth of winter barley seedling was above 120mm at 1 and 2 weeks after sowing(WAS), and above 160mm at 3 and 4 WAS. The leaf area and fresh weight showed no response for salt stress with the DWD above 12mm at 2 WAS, and above 16mm at 3 WAS. It was estimated that the electrical conductivity of soil saturation extract for the normal growth of winter barley during early seedling growth stage in new reclaimed tideland would be below 9mS / cm in 20cm depth soil.

  • PDF

Uplift Capacity of Pipe Foundation for Single-span Greenhouse (단동 온실용 파이프 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Ca2+, Mg2+, Na+, K+ in Reclaimed Tideland Soils in Kyehwado (계화도 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향)

  • Baek, Seung-Hwa;Lee, Sang-Uk;Lim, Hyo-Bin;Kim, Dae-Geun;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The effect of application of gypsum (G), popped rice hulls (PRH), and zeolite (Z) in exchangeable cations concentrations of reclaimed tideland soil in Kyehwado was investigated for 3 years from 2004 to 2006 in a pot experiment with bermuda grass (Cynodon dactylon). Treatments with three soil conditioner and with three applications were established with three replications; G1 (1,550 kg $10a^{-1}$), G2 (3,100), and G3 (6,200) for gypsum, H1 (1,000), H2 (2,000), and H3 (3,000) for PRH, and HZ1 (200), HZ2 (400), and HZ3 (800) for co-application of zeolite with PRH at the 1,500 kg $10a^{-1}$. At 60, 90, 120 days after treatment (DAT), exchangeable cations ($K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$) were analyzed Gypsum application significantly decreased $k^+$, $Na^+$, $Mg^{2+}$ in the soil probably due to exchange and subsequent leaching of these cations by $Ca^{2+}$ from the gypsum applied. Overall, $K^+$ concentration was gradually decreased by continuous application of soil conditioners and was in the order of 2004>2005>2006 regardless of the kinds and application rate of soil conditioners. Comparing $K^+$ concentrations among the soil conditioners in the same year, its concentration was in the order of gypsum$Na^+$ concentration; i.e. $Na^+$ concentration was in the order of gypsum$\ll$PRH$Mg^{2+}$ also showed a similar pattern to $Na^+$. Gypsum application significantly increased $Ca^{2+}$ concentration and in the gypsum treated soil $Ca^{2+}$ concentration increased with years.

Effect of Soil Moisture Content on Growth of Ginger (토양수분함량(土壤水分含量)이 생강(生薑) 생육(生育)에 미치는 영향(影響))

  • Jun, Jang-Hyeop;Nam, Jeong-Kwon;Lee, Kyung-Bo;Cho, Soo-Youn;Shim, Jae-Sung;Yoon, Wha-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 1997
  • Effect of soil moisture level on the growth of ginger plant was investigated through a pot experiment. The soil used for this study was collected from a newly reclaimed hillside land. The soil was a silty clay loam(19% sand, 57% of silt and 24% of clay), acidic in soil rection(pH 4.7, in $H_2O$) and low in organic matter content(1.2%). Soil moisture levels selected for the experiment were 10, 15, 20, 25, and 30% on weight basis. Under the soil moisture of 20-25%, the emergence ratio was 80-100%, 25 days alter planting. The performance of above ground parts was best under 20-25% of soil moisture. When the soil moisture content was far from 25%, high or low, the die out of above ground parts of ginger tended to increase. Under 20-25% of soil moisture the growth of roots was best and the occurrence of root rot was minimal.

  • PDF

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas. -6. On the Effects of Increased N. P. K. Applications for Rice Plant in Reclaimed Salty Areas (간척지(干拓地)에서 수도(水稻) 및 기타작물(其他作物)의 내염성(耐鹽性)에 관(關)한 연구(硏究) -6. 염분간척지(鹽分干拓地)에서 수도(水稻)에 대한 N, P, K,의 증비효과에 관(關)하여)

  • Im, H.B.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1970
  • The experiment was conducted at the salt concentration of 0.5% and 1% end of April, respectively, in low and high-salty and the non-salty areas of silt loam with the Nongkwang, rice variety. The factorial design with confounding blocks of 3 levels each of 10, 15 and 20 kg of N, 8, 12 and 16kg of phosphate and potash, respectively, per 10a was applied. 1. N applications increased by 1.5 and 2 times with the fixed amount of $P_2O_5$ and $K_2O$ (8kg/10a each) increased the proportion absorbed to the applications of N in both non salty and low-salty areas. It was observed that the absorption of Ca and Si was inhibited by either an increased treatment of N alone or combination with the other nutrients in the salty area. 2. In the non-salty area, an increased applications of standard amount of N, $P_2O_5$ and $K_2O$ respectively did not increased the yields. Doubling the application of $K_2O$ resulted in a decreased yield. 3. Applications of additional of 1.5 and 2 times the 10 kg of N per 10a increased the rice yields 12% and 21% respectively, in the low-salty area. An increased application of $P_2O_5$ and $K_2O$ failed to bring about an increased yield. 4. Increasing the application of N gave a significant increased in the yield of rice grain and 1.5 times of N applications were seemed profitable on the high-salty area. Although an increased applications $P_2O_5$ and $K_2O$ seemed to increase the yields of grain, no significant increase was observed. 5. An increased application of N increased the number of panicles up to 1.5 times the standard amount in the non-salty area, but no further increase resulted by doubling the application. The number of panicles was increased in proportion to the increased application of N in both low and high-salty areas. An increased application of $P_2O_5$ increase the number of panicles per unit area in each experimental plot while that of $K_2O$ had no effect but rather decreased the number. 6. The effect of an increased application of N decreased the weight of panicle in the non-salty area, but when the application was increased to 1.5 times or more an increased weight of panicle resulted in both salty areas. Doubling the application had approximately the same effect as 1.5 times the application. Increasing the applications of $P_2O_5$ and $K_2O$ had no effect on the panicle weight in the experimental plots. Increasing the applications of N, $P_2O_5$ and $K_2O$ did not effect the weight of 1,000 grains produced in the non-salty and salty areas. Increasing the application of N decreased the number of grains per panicle in the non-salty area but increased the number of grains per panicle in either salty areas. 7. The ratio of matured grains was highest in the low-salty area and the lowest in the high-salty area. An increased N applications decreased the ratio of matured grains in the non-salty area. No effect was observed in both low and high-salty areas. Increased the $P_2O_5$ and $K_2O$ application showed no effect on the ratio of matured grains in the experimental plots. 8. Increased applications of N, $P_2O_5$ and $K_2O$ was observed not to change the percentage of milling recovery in any experimental plots. Broken rice was increased equally by an increased application of N in the non-salty and salty areas but more remarkably so in the former. 9. Increased applications of N increased the straw production equally in the non-salty, low and high-salty areas. However, no increased production was observed from heavier applications of $P_2O_5$ and $K_2O$. Additional N applications reduced the rate of rough grain weight v.s. straw weight in the non-salty area but increased the ratios in both low and high-salty areas. Additional $P_2O_5$ and $K_2O$ had no effect with the ratio.

  • PDF