• 제목/요약/키워드: Reclaimed silt loam

검색결과 25건 처리시간 0.026초

석고처리에 의한 간척지토양의 제염효과 분석 (Analysis of Desalinization Effects ofn Gypsum Treatments in Reclaimed Tidelands)

  • 구자웅;최진규;손재권;이기성
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.162-168
    • /
    • 1999
  • This study was performed to analyze dealinization effects on gypsum treatments in reclaimed tidelands and to obtain the basci data for developing prediction techniques f desalinization to be applicable in the begining of tideland reclamation. In this study , the reclamation experiments with 4 treatments were conducted through the leachig method, using the samples of silt soil and silt loam soil collected in 5 units of tideland reclamation projects. The electrical conductivity , exchangeable sodium percentage and hydraulic conductivity were analyzed in order to investigate the effects of desalinizatino for reclaiming the tidelands with high salt concentration.

  • PDF

간척지 토양특성과 토양염류도 변화 개관 (Soil Characteristics and Soil Salinity Changes in the Reclaimed Tideland of Korea)

  • 이승헌
    • 한국토양비료학회지
    • /
    • 제42권Spc호
    • /
    • pp.14-19
    • /
    • 2009
  • 간척지 토양에 대한 기본 자료를 얻기 위하여 9개소의 간척지 과제지역에서 약 90여개의 토양시료를 채취하였다. 조사 결과 토양은 점토(2-35%), 미사(2.0-80%), 모래(8-95%) 정도로 구성되있고 토성은 주로 사질양토 또는 미시질양토로 조사되었다. 토양 pH는 5.5-9.1, 유기물함량은 $0.5-19.2g\;kg^{-1}$, 총 질소함량은 $4-1159mg\;kg^{-1}$ 그리고 유효태 인산함량은 $3.5-147.7mg\;kg^{-1}$, 전기전도도는 $0.6-31.6dS\;m^{-1}$ 그리고 Na와 Mg 함량은 가리나 칼슘함량보다 높았다. ECesms 표층과 심층 모두 높은 것으로 조사되었다.

간척지토양의 제염과정중 전기전도도 분석(농지조성 및 농어촌정비) (Analysis of Electrical Conductivity During Desalinization of Reclaimed Tidelands)

  • 구자웅;최진규;손재권;조경훈
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.54-65
    • /
    • 2000
  • This study was performed to analyze the changes of electrical conductivity with increasement of water requirements for desalinization in reclaimed tidelands and to obtain the basic data for developing prediction techniques of desalinization to be applicable in the beginning of tideland reclamation. Two different desalinization experiments were conducted through the leaching method by subsurface drainage and the rinsing method by surface darainage, using the samples of silt soil and silt loam soil collected in 5 units of tideland reclamation projects. Regression equations were obtained in order to investigate the changes of electrical conductivity during the desalinization of reclaimed tidelands and to estimate water requirements for desalinization.

  • PDF

간척지토양의 제염과정중 전기전도도와 치환성 나트륨 백분율 및 pH 사이의 관계 (Relationship Between Electrical Conductivity, Exchangeable Sodium Percentage and pH During Desalinization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.127-133
    • /
    • 1988
  • This study was performed to obtain the basic data analyzing salt movement and desalinization effects, and two different desalinization experiments through leaching and rinsing were carried out, using samples of silt loam soil and silty clay loam soil collected in reclaimed tidelands. The relationships between the electrical conductivity of saturation extract and the electrical conductivity at various dilutions, and the correlations between electrical conductivity, total salt concentration, exchangeable sodium percentage and pH during the desalinization of reclaimed tidelands, were analyzed by the statistical method. The results obtained from this study were summarized as follows: 1.The sample soils used in this study were saline-sodic soils in accordance with the USDA classi- fication system of salt affected soils. 2.The electrical conductivity of saturation extract could be estimated conveniently, using the electrical conductivity of extract from various different soil-water suspensions. 3.The total salt concentration could be expressed in the electrical conductivity, but there was a little difference by soil textures. 4.The regression analysis showed that the relationship between the electrical conductivity of saturation extract and the exchangeable sodium percentage during the desalinization of reclaimed lands could be described by a linear regression equation. 5.The value of pH showed a tendency to increase according as the exchangeable sodium percentage decreased during the desalinization of reclaimed tidelands.

  • PDF

석고, 팽화왕겨 및 제오라이트 연속시용이 간척지 미사질 양토의 입단화에 미치는 영향 (Influence of Continuous Application of Gypsum, Popped Rice Hulsl and Zeolite on Soil Aggregation of Reclaimed Silt Loam Soils)

  • 백승화;김재영;김성조
    • 유기물자원화
    • /
    • 제21권2호
    • /
    • pp.41-50
    • /
    • 2013
  • 간척지의 미사질양토 토양에서 토양 개량제의 연속시용이 토양 입단화도에 미치는 효과를 보기 위하여 이수석고 1550(G1), 3100(G2), 6200(G3) kg/10a, 팽화왕겨 1000(H1), 2000(H2), 3000(H3) kg/10a, 팽화왕겨 1500 kg/10a에 zeolite를 200(HZ1), 400(HZ2), 800(HZ3) kg/10a을 각각 조합처리 하는 등 3종의 토양개량제를 처리하고, 60, 90, 120 DAT(처리 후 경과 일수)에서 입단크기별 입단 생성 정도를 분석하였다. 60 DAT 미사질 양토에서 입단형성을 위한 토양개량제 효과는 이수석고 단일처리>팽화왕겨+Zeolite${\geq}$팽화왕겨 단일처리 순으로 그 시용효과가 높았으며, 이수석고 1550 kg/10a(G1) 처리가 52.49%로 가장 높은 입단화도를 나타내었다. 90 DAT에서는 이수석고>팽화왕겨>팽화왕겨+zeolite 순으로 그 시용효과가 높아 무처리에 비하여 각각 3.78-3.12, 2.03-3.03, 1.79-2.57배의 시용효과를 나타내었다. 120 DAT에서는 90 DAT의 경우와 같이 이수석고>팽화왕겨>팽화왕겨+zeolite 순으로 입단화도의 유지효과가 지속되고 있었으며, 무처리구에 비하여 각각 3.00-2.20, 1.06-1.64, 0.92-1.23배의 시용효과를 나타내었다. 팽화왕겨 및 팽화왕겨+zeolite 처리는 시간이 더 경과된 120 DAT에서 입단감소가 뚜렷하였고, 이수석고는 1550kg/10a(G1)의 입단화도가 53.28%로 가장 높았다. 2년 연속 시용에 따른 입단 형성량은 120 DAT에서 1년차의 경우보다 크게 향상되는 경향을 나타내었다. 결론적으로 간척지의 토양개량제 시용 효과는 2년 연속 시용의 경우가 1년 시용의 경우보다 입단화율을 높였고, 미사질 양토의 입단 형성에 이수석고 시용이 가장 효과적 이었다.

간척지토양의 제염용수량산정에 관한 실험연구 (A Laboratory Study on the Estimation of Water Requirements for the Desalinization of Reclaimed Tidelands)

  • 구자웅;한강원;은종호
    • 한국농공학회지
    • /
    • 제31권1호
    • /
    • pp.96-105
    • /
    • 1989
  • This laboratory study was performed to produce basic data for the estimation of water requirements for desalinization, through analyzing changes of the electrical conductivity and the exchangeable sodium percentage during the desalinization of reclaimed tidelands. Desalinization experiments were carried out by two water management practices, namely, the leaching method by subsurface drainage and the rinsing method by surface drainage, using samples of silt loam soil and silty clay loam soil collected in reclaimed tidelands. The results obtained from this study were summarized as follows : 1. The sample soils used in this study were saline-sodic soils with the high electrical conductivity and the high exchangeable sodium percentage. 2. Changes of the electrical conductivity and the exchangeable sodium percentage with water requirements for desalinization showed a similar tendency in the desalinization experiment by the same water management practice. 3. The regression equation between the relative electrical conductivity(EC/EC) and water requirements for desalinization(Dw/Ds) could be described by Dw/Ds=O. 29x(EC/EC.) -0.982 (Leaching method), Dw/Ds=3. 678X0. 030(EC/EC ) (Rinsing method). 4. The regression equation between the relative exchangeable sodium percentage (ESP/ESP ) and water requirements for desalinization (Dw/Ds) could be expressed in Dw/Ds = 0.039 x (ESP/ESP. ) - 1. 134 (Leaching method), Dw/Ds=7. 197X0. 024(ESP/ESP ) (Rinsing method). 5. It was estimated that water requirements for the adequate desalinization would be Dw/Ds=0.3 (Leaching method) and Dw/Ds=3.0 (Rinsing method)

  • PDF

Van Genuchten 모델을 활용한 간척지의 토양수분변화 분석 (Analysis of Soil Moisture Changes in Reclaimed Tideland Using Van Genuchten Model)

  • 고대희;손재권;이기성;김정균;송재도;박영준
    • 한국농공학회논문집
    • /
    • 제62권4호
    • /
    • pp.53-61
    • /
    • 2020
  • The laboratory model test was conducted by dividing domestic reclaimed tideland into Sandy Loam (SL) and Silt Clay Loam (SiCL) to estimate soil moisture change and water supply according to soil characteristic when establishing irrigation plan for reclaimed tideland upland crop. In addition, the applicability of each scenario was verified using Van Genuchten model, which is the most widely used mathematical model for analyzing soil moisture characteristics of reclaimed tideland uplands crops. The required water supply according to the target soil moisture tension by reclaimed tideland is as follow. In the case of SL, soil depths of 0~10 cm, 10~20 cm were analyzed as 19 mm, 35 mm to reach the field capacity, and SiCL, 33 mm, 63 mm. The required water supply of SiCL was higher than that of SL. The study compared the simulation results from the scenarios of Van Genuchen model and the measured results from the laboratory model test based on according to the reclaimed tidelands. In the case of parameter, θs, θr, α, η were analyzed 0.55, 0.18, 0.064, 1.74 in SL and 0.46, 0.22, 0.105, 1.92 in SiCL. In terms of soil characteristics, SL with better water permeability was found to have higher applicability than SiCL. By Soil depth, applicability was found in 0~10 cm directly affected by water supply.

간척지 토양의 제염과정중 수리전도도의 변화 (Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응 (Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity)

  • 김성기;김인경;이긍주
    • 농업과학연구
    • /
    • 제38권4호
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

간척지 밭작물의 정상생육을 위한 관개용수량 및 물 관리방법의 결정 (Determining Irrigation Requirements and Water Management Practices for Normal Growth of Dry Field Crops in Reclaimed Tidelands)

  • 구자웅;한강단;손재권;이동유
    • 한국농공학회지
    • /
    • 제34권4호
    • /
    • pp.80-96
    • /
    • 1992
  • This study was carried out in order to determin optimum irrigation requirements and water management practices for normal growth of dry field crops in reclaimed tidelands, and apply m planning of the irrigation projects. Desalinization experiments were performed by water management practices in the experimental field with high salt concentration, and growth experiments were conducted by irrigation point treatments using tomato and beet with relatively high salt tolerance. The results obtained from this study were summarized as follows : 1. Leaching or rinsing-leaching method was found to be effective in desalinizing the reclaimed tideland with rather high permeability. In this case, the water requirement for desalinizing the root zone layer of 40cm in depth, was estimated to be 1,200mm in depth. 2.The gypsum treatment in the desalinization of reclaimed tidelands, was ineffective in water requirements ; however, it could produce the desired effect in the facility of desalinization and the shortening of desalinization period with the sustaining permeability, in case of the desalinization by leaching method. 3.The optimum irrigation point which maintains the salt concentration within salt tolerance and maximizes the crop yield in reclaimed tidelands of silt loam soil, was found to be pF 1.6 in tomato and pF 1.8 in beet. The interval of irrigation date within 2 days was proved to he effective in both cases. 4.The optimum irrigation requirement and the water reguirement for the prevention of salt rise during the growing period after transplanting, were estimated to be 602mm(6.7mm/day) and 232mm for tomato, respectively. 5.The optimum irrigation requirement and the water requirement for the prevention of salt rise during the growing period after transplanting, were estimated to be 261mm(3.7mm/day) and 66mm for beet, respectively.

  • PDF