• Title/Summary/Keyword: Reclaimed ground

Search Result 195, Processing Time 0.022 seconds

Liquefaction Hazard Assessment according to Seismic Recurrence Intervals Using Simple Estimating Method in Busan City, Korea (간이평가법을 이용한 지진재현주기별 부산광역시 액상화 재해 평가)

  • Lim, Hyunjee;Jeong, Rae-yoon;Oh, Dongha;Kang, Hyejin;Son, Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.589-602
    • /
    • 2020
  • As can be seen in many earthquakes, liquefaction causes differential settlement, which sometimes produces serious damages such as building destruction and ground subsidence. There are many possible active faults near the Busan city and the Yangsan, Dongrae, and Ilgwang faults among them pass through the city. The Busan city is also located within the influence of recent earthquakes, which occurred in the Gyeongju, Pohang, and Kumamoto (Japan). Along the wide fault valleys in the city, the Quaternary unconsolidated alluvial sediments are thickly accumulated, and the reclaimed lands with beach sediments are widely distributed in the coastal area. A large earthquake near or in the Busan city is thus expected to cause major damage due to liquefaction in urban areas. This study conducted an assessment of the liquefaction hazard according to seismic recurrence intervals across the Busan city. As a result, although there are slight differences in degree depending on seismic recurrence intervals, it is predicted that the liquefaction potential is very high in the areas of the Nakdonggang Estuary, Busan Bay, Suyeong Bay, and Songjeong Station. In addition, it is shown that the shorter the seismic recurrence interval, the greater difference the liquefaction potential depending on site periods.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

The physical geography in general:yesterday and tomorrow (자연지리학 일반: 회고와 전망)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.2
    • /
    • pp.138-159
    • /
    • 1996
  • There has been a tendency for Geomorphology and Climatology to be dominant in Physical Geography for 50 years in Korea. Physical Geography is concerned with the study of the totality of natural environment through the integrated approaches. But, an overall direction or a certain paradigm could not be found, because major sub-divisions of Physical Geography have been studied individually and the subjects and the approaches in studying Physical Geography are enormously diverse. A consensus of opinion could not also exist in deciding what kind of the sub-divisions should be included in the physical geography in general and how those should be summarized. Furthermore it would be considered imprudent to survey the studies of Physical Geography besides those of Geomorphology and Climatology due to the small number of researchers. Assuming that the rest of Physical Geographical studies with the exception of Geomorphological and Climatological studies are the Physical Geography in general, the studies of Physical Geogrpahy in general are summarized and several aspects are drown out as follows. First the descliption of all possible factors of natural environments was the pattern of early studies of Physical Geography and the tendency is maintained in the various kinds of research and project reports. Recently Physical Geographers have published several introductory textbooks or research monographs. In those books, however, the integrated approaches to Physical Geography were not suggested and the relationship between man and nature are dealt with in the elementary level. Second, the authentic soil studies of Physical Geographers are insignificant, because the studies of soil in Physical Geography have been mostly considered as the subsidiary means of Geomorphology Summarizing the studies of Soil Gegraphy by physical geographers and other Pedologists, the subjects are classified as soil-forming processes, soil erosions, soil in the tidal flat and reclaimed land, and soil pollution. Physical Geographers have focused upon the soil-forming processes in order to elucidate the geomorphic processes and the past climatic environment. The results of other subjects are trifling. Thirdy Byogeygrayhers and the results of studies are extremely of small number and the studies of Biogeography in Korea lines in the starting point. But, Biogeography could be a more unifying theme for the Physical-human Geography interface, and it would be expected to play an active part in the field of environmental conservation and resource management. Forth, the studies of Hydrogeography (Geographical Hydrology) in Korea have run through the studies of water balance and the morphometric studies such as the drainage network analysis and the relations of various kinds of morphometric elements in river. Recently, the hydrological model have introduced and developed to predict the flow of sediment, discharge, and ground water. The growth of groundwater studies is worthy of close attention. Finally, the studies on environmental problems was no mole than the general description about environmental destruction, resource development, environmental conservation, etc. until 1970s. The ecological perspectives on the relationship between man and nature were suggested in some studies of natural hazard. The new environmentalism having been introduced since 1980s. Human geographers have lead the studies of Environmental Perception. Environmental Ethics, Environmental Sociology, environmental policy. The Physical geographers have stay out of phase with the climate of the time and concentrate upon the publication of introductory textbooks. Recently, several studies on the human interference and modification of natural environments have been made an attempt in the fields of Geomorphology and climatology. Summarizing the studies of Physical Geography for 50 years in Korea, the integrated approaches inherent in Physical Geography disappeared little by little and the majol sub-divisions of Physical Ceography have develop in connection with the nearby earth sciences such as Geology, Meteorology, Pedology, Biology, Hydrology, etc been rediscovered by non-geographers under the guise of environmental science. It is expected that Physical Geography would revive as the dominant subject to cope with environmental problems, rearming with the innate integrated approaches.

  • PDF

Uplift Capacity of Pipe Foundation for Single-span Greenhouse (단동 온실용 파이프 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.

Soil Surface Fixation by Direct Sowing of Zoysia japonica with Soil Improvement on the Dredged Soil Slope (해저준설토 사면에서 개량제 처리에 의한 한국들잔디 직파 지표고정 공법에 관한 연구)

  • Jeong, Yong-Ho;Lee, Im-Kyun;Seo, Kyung-Won;Lim, Joo-Hoon;Kim, Jung-Ho;Shin, Moon-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to compare the growth of Zoysia japonica depending on different soil treatments in Saemangeum sea dike, which is filled with dredged soil. Zoysia japonica was planted using sod-pitching method on the control plot. On plots which were treated with forest soil and soil improvement, Zoysia japonica seeds were sprayed mechanically. Sixteen months after planting, coverage rate, leaf length, leaf width, and root length were measured and analyzed. Also, three Zoysia japonica samples per plot were collected to analyze nutrient contents. Coverage rate was 100% in B treatment plot(dredged soil+$40kg/m^3$ soil improvement+forest soil), in C treatment plots (dredged soil+$60kg/m^3$ soil improvement+forest soil), and D treatment plots (dredged soil+$60kg/m^3$ soil improvement), while only 43% of the soil surface was covered with Zoysia japonica on control plots. The width of the leaf on C treatment plots (3.79mm) was the highest followed by D treatment (3.49mm), B treatment (2.40mm) and control plots (1.97mm). Leaf and root length of D treatment was 30.18cm and 13.18cm, which were highest among different treatments. The leaf length of D treatment was highest followed by C, B, and A treatments. The root length of D treatment was highest followed by C, A, and B treatments. The nitrogen and phosphate contents of the above ground part of Zoysia japonica were highest in C treatment, followed by D, B, and A treatments. The nitrogen and phosphate contents of the underground part of Zoysia japonica were highest in D treatment, followed by C, A, and B treatments. C and D treatments showed the best results in every aspect of grass growth. The results of this study could be used to identify the cost effective way to improve soil quality for soil surface fixation on reclaimed areas using grass species.